
ARC Documentation
Release 1.0

ARC @ VT

Sep 20, 2023

CONTENTS

1 Getting Started 3

2 Information for Faculty/Project PIs 5

3 Resources 9

4 Software 37

5 Usage 131

i

ii

ARC Documentation, Release 1.0

This site provides in depth documentation of how to use our resources. For more general information about ARC, see
our main site.

CONTENTS 1

https://arc.vt.edu

ARC Documentation, Release 1.0

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

New to ARC? No problem. See the content below to get started, but don’t hesitate to reach out to us if you have
questions or need assistance.

1.1 The Basics

The following are the basic steps to getting started with ARC resources (and at most research computing centers):

1. Get an account

2. Get an allocation (if you are a faculty member/PI) or get access to one (if you are a student)

3. Decide which hardware you want to use

4. Find or install your software

5. Develop your workflow, possibly via interactive jobs

6. Submit your production research via batch jobs

In addition to the text documentation linked above, we offer video tutorials of most of these steps as well as training
courses to help people get started.

1.2 Learning Curve

There can be a learning curve in using high-performance computing (HPC) resources. In particular:

• ARC systems run Linux, and traditional use is via the command line. However, the latter has become less true
in recent years. For example, via Open OnDemand ARC users can now access our systems from their browser
and start many popular applications such as Jupyter notebooks via the click of a button.

• To run on ARC systems, you must submit your work through the scheduler. This is different from running on,
e.g., a lab workstation. However, this mostly just involves writing down a list of commands you want the system
to run and how many resources you want it to use – it is not difficult once you get used to it.

• To leverage HPC resources, your program needs to be able to leverage parallel computing in some way. However,
may third party programs or libraries exist to make this easier and ARC computational scientists are available if
you need assistance.

3

https://arc.vt.edu/account

ARC Documentation, Release 1.0

1.3 Familiar with HPC, new to ARC

If you are an experienced HPC user who is new to ARC, you may just need to know the following:

• ARC uses the Slurm scheduler.

• ARC uses EasyBuild for software modules.

• You will need to have an allocation to charge your jobs to. This is free of charge unless you would like to invest
in priority access.

• Descriptions of our compute and storage resources can be found here.

1.4 Training

To help users get started, we offer introductory training sessions throughout the year via the Professional Development
Network. Our computational scientists are also available for classroom presentations on high-performance, parallel,
scientific, or other research computing topics – this is a great way to get a research group up to speed.

If you prefer to do things at your own pace, we offer video tutorials that walk through each of the steps of getting started
with ARC.

1.5 Getting Help

If you are interested in using ARC’s resources for your current or future projects, or if you would just like to learn more
about our computing systems and services, please request a consultation or drop by our office hours. You do not need
to have any prior experience with high-performance computing — our team can assist you in determining the right
system for your project.

4 Chapter 1. Getting Started

https://easybuild.io/
https://profdev.tlos.vt.edu/
https://profdev.tlos.vt.edu/
https://arc.vt.edu/classroom_presentations/
https://arc.vt.edu/help
https://arc.vt.edu/office-hours/

CHAPTER

TWO

INFORMATION FOR FACULTY/PROJECT PIS

The following pages provide information that might be of specific use to faculty members or other project Principal
Investigators (PIs).

2.1 Citations

Recognition and documentation of the contribution that ARC’s systems play in breakthrough research is essential
to ensuring continued support for and availability of cutting-edge computing resources at Virginia Tech. Please cite
Advanced Research Computing at Virginia Tech in any research report, journal article, or other publication that requires
citation of an author’s contributions.

Suggested verbiage:

The authors acknowledge Advanced Research Computing at Virginia Tech for providing computational
resources and technical support that have contributed to the results reported within this paper. URL:
https://arc.vt.edu/

2.2 Cost Center

2.2.1 Intent

The Cost Center provides researchers or projects with the ability to purchase computational or storage resources beyond
what ARC provides for free, for computational “bursts” to meet, e.g., conference deadlines, or short-term storage of
large datasets. It provides:

• Compute or storage beyond the free tier

• Priority quality of service (QOS) for faster job execution

• PI-specified sub-account limits

• Requestable through ColdFront

The program is also intended to provide the accounting infrastructure to allow PIs to include access to resources in
grant proposals and contracts.

If you would like to get access to dedicated computational resources or long-term expansion of storage, you may want
to instead consider the Investment Program.

5

https://coldfront.arc.vt.edu/

ARC Documentation, Release 1.0

2.2.2 Free Tier

ARC is working to decrease HPC cost to VT, improve access, services and augment VT’s research and teaching mis-
sions. As part of this, we are realigning ARC to more naturally support research groups (and class groups). Starting
on TinkerCliffs, the Division of IT provides the following resources for each ARC user account free of charge:

Category User PI (project request)
Compute 240 core-hours/month 600,000 core-hours/month (TinkerCliffs only)
Home storage 640 GB –
User workspace storage 1 TB –
Project storage – 25 TB
Archive storage /vtarchive/home/pid /vtarchive/groups/group

Allocations can also be submitted for class needs; these are “owned” by ARC and not billed toward a PI’s account.

Note: Jobs submitted to preemptable partitions do NOT count against the above user/project limits.

2.2.3 Job Priority

Priority determines position in “line”:

Quality of Service (QoS) Available by/through:
priority (high) for-fee via cost-center
normal (default) normal

2.2.4 Current Cost Structure

TinkerCliffs

The fee structure on TinkerCliffs is as follows:

Queue Cost
normal_q $0.0023 / core-hour
largemem_q $0.01 / core-hour
intel_q $0.0091 / core-hour

Storage and other available resources

Temporary expansion of /project storage can be requested. This will be billed at $2.1694 per TB per month.

For server hosting, enterprise backup or other needs, please send Terry Herdman an email.

6 Chapter 2. Information for Faculty/Project PIs

mailto:terry.herdman@vt.edu

ARC Documentation, Release 1.0

2.3 Facilities, Equipment, and Other Resources Statement

The following is a draft Facilities, Equipment and Other Resources statement that researchers can include in research
proposals:

Computing resources will be provided through Advanced Research Computing (ARC) within the Division of Informa-
tion Technology at Virginia Tech. ARC provides cutting-edge high-performance computing and visualization resources.
Currently available high performance computing (HPC) systems include:

1. TinkerCliffs: a general purpose CPU cluster. This cluster has approximately 40,000 AMD Rome CPU cores,
HDR Infiniband offering 100 Gbps throughput, nodes for high-memory applications, an additional 16 Intel Xeon
AP nodes and four nodes with eight NVIDIA A100-80GB GPUs each

2. Infer: GPU-based cluster made up of 58 compute nodes with a total of 4 NVIDIA Volta V100 GPUs, 18 NVIDIA
Tesla T4 GPUs, and 80 NVIDIA Tesla P100 GPUs; Infiniband interconnect

3. Cascades: General purpose cluster with 190 compute nodes equipped with two 16-core Intel Xeon “Broadwell”
CPU and 128 GB of memory; 38 compute nodes equipped with two 12-core Intel Xeon Skylake CPU, 376 GB
of memory, and two NVIDIA V100 GPU; 4 compute nodes with two NVIDIA K80 GPU, 512 GB of memory
and one 2 TB NVMe flash card; 2 four-socket compute nodes with four 18-core Intel Xeon “Broadwell” CPU
and 3 TB of memory; Mellanox EDR Infiniband interconnect

4. Dragonstooth: High-throughput cluster with 48 two-socket compute nodes equipped with two 12-core Intel
Xeon “Haswell” CPU, 256 GB of memory and four 480GB SSD drives

Parallel filesystems provide over 11 Petabytes of high performance storage, and a tape archive is provided to support
long term data storage.

ARC’s Visionarium Lab also provides an array of visualization resources, including the VisCube, an immersive 10 x
10 three-dimensional visualization environment. In all, the VT Visionarium provides nearly 86 million pixels, 4 billion
triangles-per-second and 22 TB/s of GPU memory bandwidth. ARC resources are able to leverage Virginia Tech’s
excellent network connectivity, and network. Virginia offers access to advanced national networks, including ESnet,
Internet2, and Mid Atlantic Crossroads.

Upcoming Resources

In the next year, ARC plans to release additional resources supporting:

5. Protected data: This will be a dedicated cluster and storage supporting data needing elevated protections. This
cluster will be available early in the winter of 2021-2022.

6. AI/ML: Additional nodes will be added to the TinkerCliffs cluster to support AI/ML applications. Scheduled to
be released in late Spring 2022.

7. Cloud: Kubernetes resource for cloud-like applications.

2.4 Investment Program

2.4.1 Intent

The investment program is for researchers or projects who want dedicated resources from ARC over some period of
time:

• For long-term (1-5 year) project needs

• Reserved compute hardware via dedicated partition (with preemptable overlay)

• Expansion of Project or Work via quota increase

2.3. Facilities, Equipment, and Other Resources Statement 7

ARC Documentation, Release 1.0

• Available via MOU

If you are less interested in dedicated hardware and just want to use more resources than ARC provides for free – for
example, in bursts before conference deadlines – you might instead consider the Cost Center.

2.4.2 Memorandum of Understanding (MOU)

An investment Memoradum Of Understanding (MOU) is updated and made available for each new cluster as it comes
online. The current MOU covers TinkerCliffs.

For example investment MOUs, see below:

• Compute

• Storage

2.4.3 To Invest

If you have interest in learning more about the Investment Computing Program, please submit a consultation request.
ARC can provide a brief presentation on the Investment Computing program at department meetings or to research
teams if desired.

Contents:

• ColdFront: Interface for requesting compute or storage allocations

• Cost Center: Description of ARC's cost center program if you need more resources than ARC provides for free
(even in short intervals for conference deadlines, etc)

• Investment Program: Description of ARC's investment program if you want to acquire a dedicated portion of
one of ARC's systems

• FE&R Statement: Facilities, Equipment, and Other Resources statement for inclusion in proposals

• Citations: Example acknowledgement of ARC for inclusion in papers that were prepared with the help of our
systems

8 Chapter 2. Information for Faculty/Project PIs

https://arc.vt.edu/help
https://coldfront.arc.vt.edu

CHAPTER

THREE

RESOURCES

Contents:

3.1 Computational Resources

Contents:

3.1.1 TinkerCliffs, ARC’s Flagship Resource

Overview

TinkerCliffs came online in the summer of 2020. With nearly 42,000 cores and over 93 TB of RAM, TinkerCliffs is
nearly seven times the size of BlueRidge, ARC’s previous flagship CPU compute system, which was retired at the end
of 2019. TinkerCliffs hardware is summarized in the table below.

Base Compute
Nodes

High Memory
Nodes

Intel Nodes A100 GPU
Nodes

Total

Vendor Cray Cray HPE HPE Apollo 6500 -
Chip AMD EPYC 7702 AMD EPYC 7702 Intel Xeon Platinum

9242
AMD EPYC 7742 -

Nodes 308 8 16 4 336
Accelerators - - - 8x NVIDIA

A100-80G
-

Cores/Node 128 128 96 128 -
Memory
(GB)/Node

256 1,024 384 2048 -

Total Cores 39,424 1,024 1,536 512 42,496
Total Memory
(GB)

78,848 8,192 6,144 8192 101,376

Local Disk 480GB SSD 480GB SSD 3.2TB NVMe 11.7TB NVMe -
Interconnect HDR-100 IB HDR-100 IB HDR-100 IB 4x HDR-200 IB -

Tinkercliffs is hosted in the Steger Hall HPC datacenter on the Virginia Tech campus, so it is physically separated
from other ARC HPC systems which are hosted in the AISB Datacenter at the Corporate Research Center (CRC) in
Blacksburg.

For HPC, it is important that file systems (data storage) be physically near to the compute systems, so there is not direct
connectivity from Tinkercliffs to some of the legacy filesystems (eg. GPFS /groups and /work). The /home filesystem

9

https://en.wikichip.org/wiki/amd/epyc/7702
https://en.wikichip.org/wiki/amd/epyc/7702
https://en.wikichip.org/wiki/intel/xeon_platinum/9242
https://en.wikichip.org/wiki/intel/xeon_platinum/9242
https://en.wikichip.org/wiki/amd/epyc/7742

ARC Documentation, Release 1.0

on Tinkercliffs is the same as on legacy clusters, but for the reasons stated above, should not be used for i/o intensive
workloads.

A BeeGFS file system supports /projects and /work filesystems for group collaboration and high-performance in-
put/output (I/O).

A100 GPU Nodes

Four nodes nodes equipped with GPU accelerators were added to Tinkercliffs in June 2021. Each of these nodes
is designed to be a clone of NVIDIA’s DGX nodes to provide a dense GPU resource for the VT research computing
community. The eight NVIDIA A100-80G GPUs in each node are interconnected with NVIDIA’s NVLink technology.
For internode communications, each chassis is equipped with four Mellanox HDR-200 Infiniband cards distributed
across the PCIe Gen4 bus to provide each GPU with a nearby, high speed, low latency, path to the Infiniband network.

Get Started

Tinkercliffs can be accessed via one of the two login nodes:

tinkercliffs1.arc.vt.edu tinkercliffs2.arc.vt.edu

For testing purposes, all users will be alloted 240 core-hours each month in the “personal” allocation. Researchers at
the PI level are able to request resource allocations in the “free” tier (usage fully subsidized by VT) and can allocate
600,000 monthly billing units (normal_q core-hours) among their projects.

To do this, log in to the ARC allocation portal https://coldfront.arc.vt.edu,

• select or create a project

• click the “+ Request Resource Allocation” button

• Choose the “Compute (Free) (Cluster)” allocation type

Usage needs in excess of 600,000 monthly billing units can be purchased via the ARC Cost Center.

10 Chapter 3. Resources

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://arc.vt.edu/arc-investment-computing-and-cost-center/

ARC Documentation, Release 1.0

Policies

Limits are set on the scale and quantity of jobs at the user and allocation (Slurm account) levels to help ensure availability
of resources to a broad set of researchers and applications. These are the limits applied to free tier usage (note that the
terms “cpu” and “core” are used interchangably here following Slurm terminology):

nor-
mal_q

dev_q large-
mem_q

intel_q a100_normal_qa100_dev_qinter-
ac-
tive_q

pre-
empt-
able_q

Node Type Base
Com-
pute

Base
Com-
pute

High
Mem-
ory

Intel A100
GPU

A100
GPU

Base
Com-
pute

Base
Com-
pute

Billing Weight 1 1 4.045454/core3.772727/core155.26/GPU155.26/GPU0.25/core 0 (no
billing)

Number of Nodes 302 307 8 16 4 4 2 307
MaxRunningJobs
(User)

24 2 4 8 12 2 4 64

MaxSubmitJobs (User) 240 3 40 80 48 8 4 640
MaxRunningJobs
(Allocation)

48 3 6 12 24 4 - 128

MaxSubmitJobs (Allo-
cation)

480 6 60 120 48 8 - 1280

MaxNodes (User) 64 64 4 8 1 1 - -
MaxNodes (Allocation) 96 96 6 12 2 2 - -
MaxCPUs (User) 8192 8192 512 768 128 128 64 -
MaxCPUs (Allocation) 12288 12288 768 1152 256 256 128 -
MaxGPUs (User) - - - - 8 8 - -
MaxGPUs (Allocation) - - - - 16 16 - -
MaxWallTime 6 days 4 hours 6 days 6 days 6 days 4 hours 4 hours -
Free allowance at
Max[CPU/GPU]s
(User)

3.05
days

3.05
days

12.07
days

8.63
days

20.13
days

- - -

Free allowance at
Max[CPU/GPU]s
(Alloc)

2.03
days

2.03
days

9.05
days

6.47
days

10.06
days

- - -

Tinkercliffs is part of the ARC cost center, which provides a substantial “free tier” of usage. Each researcher is provided
600,000 billing units (1 billing unit = 1 TC normal_q core-hour) which can be divided among all projects and allocations
they own. Monthly billing is based on usage attributed to jobs which complete in that month, so jobs which start in
month A and finish in month B are billed in month B.

Modules

TinkerCliffs is different from previous ARC clusters in that it uses a new application stack/module system based on
EasyBuild. Our old application stack was home-grown and involved a fair amount of overhead in getting new modules
- e.g., new versions of a package - installed. EasyBuild streamlines a lot of that work and should also make it trivial in
some cases for users to install their own versions of packages if they so desire. Key differences from a user perspective
include:

• Hierarchies are replaced by toolchains. Right now, there are two:

– foss (“Free Open Source Software”): gcc compilers, OpenBLAS for linear algebra, OpenMPI for MPI, etc

– intel: Intel compilers, Intel MKL for linear algebra, Intel MPI

3.1. Computational Resources 11

https://arc.vt.edu/arc-investment-computing-and-cost-center/
https://easybuild.readthedocs.io

ARC Documentation, Release 1.0

• Instead of loading modules individually (e.g., module load intel mkl impi), a user can just load the toolchain
(e.g., module load intel/2019b).

• Modules load their dependencies, e.g.,

$ module reset; module load HPL/2.3-intel-2019b; module list

Currently Loaded Modules:
1) shared 6) craype-x86-rome 11) binutils/2.

→˓32-GCCcore-8.3.0 16) intel/2019b
2) slurm/20.02.3 7) craype-network-infiniband 12) iccifort/

→˓2019.5.281 17) HPL/2.3-intel-2019b
3) apps 8) DefaultModules 13) impi/2018.5.

→˓288-iccifort-2019.5.281
4) site/tinkercliffs/easybuild/setup 9) GCCcore/8.3.0 14) iimpi/2019b
5) cray 10) zlib/1.2.11-GCCcore-8.3.0 15) imkl/2019.5.

→˓281-iimpi-2019b

• All modules are visible with module avail. So in many cases it is probably better to search with module
spider rather than printing the whole list.

• Some key system software, like the Slurm scheduler, are included in default modules. This means that module
purge can break important functionality. Use module reset instead.

• Lower-level software is included in the module structure (see, e.g., binutils in the HPL example above), which
should mean less risk of conflicts in adding new versions later.

• Environment variables (e.g., $SOFTWARE_LIB) available in our previous module system may not be provided.
Instead, EasyBuild typically provides $EBROOTSOFTWARE to point to the software installation location. So
for example, to link to NetCDF libraries, one might use -L$EBROOTNETCDF/lib64 instead of the previous
-L$NETCDF_LIB.

Architecture

• The AMD Rome architecture is similar to Cascades in that it is x86_64 but lacks the AVX-512 instruction set
added to Intel processors in the last couple of years.

• Nodes are larger (128 cores) and have more memory bandwidth (~350 GB/s).

• There are eight NUMA (memory locality) domains per node and one L3 cache for every four cores.

Optimization

See also the tuning guides available at https://developer.amd.com/, especially this guide to compiler flags.

• Cache locality really matters - process pinning can make a big difference on performance.

• Hybrid programming often pays off - one MPI process per L3 cache with 4 threads is often optimal.

Intel toolchain:

• Fast, though our testing has found that v2020 is slower than v2019

• Avoid –xhost

• Use -march=core-avx2 to get the optimal vectorization instruction set

• Use the following environment variables for MKL (we set these as part of the MKL module):

12 Chapter 3. Resources

https://developer.amd.com/wordpress/media/2020/04/Compiler%20Options%20Quick%20Ref%20Guide%20for%20AMD%20EPYC%207xx2%20Series%20Processors.pdf

ARC Documentation, Release 1.0

export MKL_DEBUG_CPU_TYPE=5
export MKL_ENABLE_INSTRUCTIONS=AVX2

Foss (GCC) toolchain:

• Use -mtune=znver2 -march=znver2 to target the Zen2 architecture

• Use -mavx2 to get the optimal vectorization instruction set

AOCC Compiler:

• AMD compiler. Very fast on Rome architectures. ARC is working on getting AOCC integrated into a toolchain.

• Use -mtune=znver2 -march=znver2 to target the Zen2 architecture

• Use -mavx2 to get the optimal vectorization instruction set

Examples

See below for a series of examples of how to compile code for a variety of compilers and for how to run optimally
in a variety of configurations. These and a wide variety of simple application-specific examples can be found in our
examples repository.

Stream

STREAM is a memory bandwidth benchmark. To maximize bandwidth, we run in parallel with one process per L3
cache (cores 0, 4, . . . , 124).

#Load the Intel toolchain
module reset; module load intel/2019b

#Tell OpenMP to use every 4th core
export OMP_PROC_BIND=true
export OMP_NUM_THREADS=32
export OMP_PLACES="$(seq -s },{ 0 4 127 | sed -e 's/\(.*\)/\{\1\}/')"

#Compile
icc -o stream.intel stream.c -DSTATIC -DNTIMES=10 -DSTREAM_ARRAY_SIZE=2500000000 \
-mcmodel=large -shared-intel -Ofast -qopenmp -ffreestanding -qopt-streaming-stores␣

→˓always

#Run
./stream.intel

Results:

Function Best Rate MB/s
Copy: 341475.1
Scale: 341770.0
Add: 336668.3
Triad:q: 336972.6

3.1. Computational Resources 13

https://www.cs.virginia.edu/stream/

ARC Documentation, Release 1.0

MT-DGEMM

mt-dgemm is a threaded matrix multiplication program that can be used to benchmark dense linear algebra libraries.
Here we use it to show how to link against linear algebra libraries and run efficiently across a socket.

AOCC

#Load the aocc and blis modules
module reset; module load aocc/aocc-compiler-2.1.0 amd-blis/aocc/64/2.1

#Compile:
Build for the Rome architecture: -mtune=znver2 -march=znver2
Use fast vectorization: -mavx2
Use math libraries: -lm
Use OpenMP: -fopenmp -lomp
Other optimizations: -Ofast -ffp-contract=fast -funroll-loops
Link with AMD BLIS linear algebra library: -I$BLISDIR/../include $BLISDIR/libblis-mt.a
Macro used by the mt-dgemm program: -D USE_CBLAS
clang -mtune=znver2 -march=znver2 -mavx2 -lm -fopenmp -lomp -Ofast -ffp-contract=fast -
→˓funroll-loops -I$BLISDIR/../include $BLISDIR/libblis-mt.a -D USE_CBLAS -o mt-dgemm.
→˓aocc mt-dgemm.c

#Run with 64 OpenMP threads on cores 0-63 (socket 1) using NUMA memory regions 0-3␣
→˓(socket 1). This keeps Linux from moving the threads away from memory.
OMP_NUM_THREADS=64 GOMP_CPU_AFFINITY=0-63:1 numactl --membind=0-3 ./mt-dgemm.aocc 16000

GCC

#Load the foss toolchain
module reset; module load foss/2020a

#Compile:
Build for the Rome architecture: -mtune=znver2 -march=znver2
Use fast vectorization: -mavx2
Use math libraries: -lm
Use OpenMP: -fopenmp
Other optimizations: -Ofast -ffp-contract=fast -funroll-loops
Link with OpenBLAS linear algebra library: -L$OPENBLAS_LIB -lopenblas
Macro used by the mt-dgemm program: -D USE_CBLAS
gcc -mtune=znver2 -march=znver2 -mavx2 -lm -fopenmp -Ofast -ffp-contract=fast -funroll-
→˓loops -L$OPENBLAS_LIB -lopenblas -D USE_CBLAS -o mt-dgemm.gcc mt-dgemm.c

#Run with 64 OpenMP threads on the cores (0-63) and memory (regions 0-3) associated with␣
→˓socket 1. This keeps Linux from moving the threads away from memory. Using GOMP_CPU_
→˓AFFINITY to pin thread 0 to core 0, thread 1 to core 1, etc would be ideal but breaks␣
→˓the threading in OpenBLAS for whatever reason.
OMP_NUM_THREADS=64 numactl -C 0-63 --membind=0-3 ./mt-dgemm.gcc 16000

14 Chapter 3. Resources

https://portal.nersc.gov/project/m888/apex/mt-dgemm_160114.tgz

ARC Documentation, Release 1.0

Intel

Here we use intel 2019 as testing indicates that 2020 is substantially slower.

#Load the intel toolchain
module reset; module load intel/2019b

#Note that the module has set MKL_ENABLE_INSTRUCTIONS=AVX2 and MKL_DEBUG_CPU_TYPE=5
to ensure that MKL uses the optimal instruction set
env | egrep "MKL_DEBUG_CPU_TYPE|MKL_ENABLE_INSTRUCTIONS"

#Compile:
Use fast vectorization: -march=core-avx2
Use OpenMP: -qopenmp
Other optimizations: -O3 -ffreestanding
Link with MKL linear algebra library: -mkl
Macro used by the mt-dgemm program: -D USE_MKL=1
icpc -march=core-avx2 -qopenmp -O3 -ffreestanding -mkl -D USE_MKL=1 -o mt-dgemm.intel mt-
→˓dgemm.c

#Run with 64 threads on cores 0-63 (socket 1) using NUMA memory regions 0-3 (socket 1).␣
→˓This keeps Linux from moving the threads away from memory.
MKL_NUM_THREADS=64 GOMP_CPU_AFFINITY=0-63:1 numactl --membind=0-3 ./mt-dgemm.intel 16000

Results

The results show the benefits of AMD’s optimizations and of MKL’s performance over OpenBLAS:

aocc+blis 2.1: 1658.861832 GF/s
foss/2020a: 1345.527671 GF/s
intel/2019b: 1615.846327 GF/s

HPL

HPL is a computing benchmark. Here we use it to demonstrate how to run in the pure MPI (1 process per core) and
hybrid MPI+OpenMP (1 process per L3 cache with 4 OpenMP threads working across the cache) models. To load the
HPL module, we can do simply

module reset; module load HPL/2.3-intel-2019b #intel
module reset; module load HPL/2.3-foss-2020a #gcc

3.1. Computational Resources 15

https://www.netlib.org/benchmark/hpl/

ARC Documentation, Release 1.0

MPI Only (1 MPI process/core)

Here we use pure MPI and start one MPI process per core. Jobs in this case should typically be requested with –ntasks-
per-node=128 (if you want full node performance).

• Intel, using mpirun. We use an environment variable to make sure that MPI processes are laid out in order and
not moved around by the operating system.

mpirun -genv I_MPI_PIN_PROCESSOR_LIST=0-127 xhpl

• gcc, using mpirun. Here we use OpenMPI’s mapping and binding functionality to assign the processes to con-
secutive cores.

mpirun --map-by core --bind-to core -x OMP_NUM_THREADS=1 xhpl

• Intel or gcc, using srun. We use srun’s cpu-bind flag to bind the processes to cores.

srun --cpu-bind=cores xhpl

Hybrid MPI+OpenMP (1 MPI process/L3 cache)

Here we start one MPI process per L3 cache (every 4 cores). Jobs in this case should typically be requested with
–ntasks-per-node=32 –cpus-per-task=4 so that Slurm knows how many processes you need.

• Intel, using mpirun. We use environment variables to tell mpirun to start a process on every fourth core and use
4 OpenMP (MKL) threads per process:

mpirun -genv I_MPI_PIN_PROCESSOR_LIST="$(seq -s , 0 4 127)" -genv I_MPI_PIN_
→˓DOMAIN=omp -genv OMP_NUM_THREADS=4 -genv OMP_PROC_BIND=TRUE -genv OMP_PLACES=cores xhpl

• gcc, using mpirun. Here we use OpenMPI’s mapping and binding functionality to assign the processes to L3
caches.

mpirun --map-by ppr:1:L3cache --bind-to l3cache -x OMP_NUM_THREADS=4 xhpl

• Intel or gcc, using Slurm’s srun launcher. We use a cpu mask to tell Slurm which cores each process should have
access to. (0xF is hexadecimal for 15, or 1111 in binary, meaning access should be allowed to the first four cores.
0xF0 is 11110000 in binary, meaning access should be allowed to the second set of four cores. The list continues
through 11110000.0000, indicating that the last process should have access to cores 124-127.)

srun --cpu-bind=mask_cpu=0xF,0xF0,0xF00,0xF000,0xF0000,0xF00000,0xF000000,0xF0000000,
→˓0xF00000000,0xF000000000,0xF0000000000,0xF00000000000,0xF000000000000,0xF0000000000000,
→˓0xF00000000000000,0xF000000000000000,0xF0000000000000000,0xF00000000000000000,
→˓0xF000000000000000000,0xF0000000000000000000,0xF00000000000000000000,
→˓0xF000000000000000000000,0xF0000000000000000000000,0xF00000000000000000000000,
→˓0xF000000000000000000000000,0xF0000000000000000000000000,0xF00000000000000000000000000,
→˓0xF000000000000000000000000000,0xF0000000000000000000000000000,
→˓0xF00000000000000000000000000000,0xF000000000000000000000000000000,
→˓0xF0000000000000000000000000000000 xhpl

16 Chapter 3. Resources

ARC Documentation, Release 1.0

Results

The results show the benefit of the hybrid MPI+OpenMP model and of MKL over OpenBLAS, particularly in the
hybrid model.

intel | mpi | mpirun | 2,944 GFlops/s
intel | mpi | srun | 2,809 GFlops/s
gcc | mpi | mpirun | 2,734 GFlops/s
gcc | mpi | srun | 2,659 GFlops/s

intel | mpi+omp | mpirun | 3,241 GFlops/s
intel | mpi+omp | srun | 3,227 GFlops/s
gcc | mpi+omp | mpirun | 2,836 GFlops/s
gcc | mpi+omp | srun | 2,845 GFlops/s

3.1.2 Infer, GPU Cluster

Overview

Infer came online in January of 2021 and provides 18 nodes, each with an Nvidia T4 GPU. The cluster’s name “Infer”
alludes to the AI/ML inference capabilities of the T4 GPUs derived from the “tensor cores” on these devices. We
think they will also be a great all-purpose resource for researchers who are making their first forays into GPU-enabled
computations of any type.

In the spring of 2021, 40 nodes with two Nvidia P100 GPUs each were migrated from a older ARC system which was
being decommissioned.

Technical details are below:

Vendor HPE Dell
Chip Intel Xeon Gold 6130 Intel Xeon E5-2680v4 2.4GHz
Nodes 18 40
Cores/Node 32 28
GPU Model Nvidia Tesla T4 Nvidia Tesla P100
GPU/Node 1 2
Memory (GB)/Node 192 512
Total Cores 576 1120
Total Memory (GB) 3,456 20,480
Local Disk 480GB SSD 187GB SSD
Interconnect EDR-100 IB Ethernet

Login

ARC users can log into Infer at:

infer1.arc.vt.edu

3.1. Computational Resources 17

https://en.wikichip.org/wiki/intel/xeon_gold/6130
https://en.wikichip.org/wiki/intel/xeon_e5/e5-2680_v4
https://www.nvidia.com/en-us/data-center/tesla-t4/
https://www.nvidia.com/en-us/data-center/tesla-p100/

ARC Documentation, Release 1.0

Policies

Limits are set on the scale and quantity of jobs at the user and allocation (Slurm account) levels to help ensure availability
of resources to a broad set of researchers and applications:

t4_normal_q t4_dev_q p100_normal_q p100_dev_q

Node Type T4 GPU T4 GPU P100 GPU P100 GPU
Billing Weight 0 (no billing) 0 (no billing) 0 (no billing) 0 (no billing)
Number of Nodes 16 2 -coming soon- -coming soon-
MaxRunningJobs (User) 10 2

MaxSubmitJobs (User) 100 3

MaxRunningJobs (Allocation) 20 3

MaxSubmitJobs (Allocation) 200 6

MaxNodes (User) 8 2

MaxNodes (Allocation) 12 2

MaxCPUs (User) 256 64

MaxCPUs (Allocation) 384 64

MaxGPUs (User) 8 2

MaxGPUs (Allocation) 12 2

Max Job Duration (hours) 72 4

Modules

Infer’s module structure is similar to that of TinkerCliffs, but different from previous ARC clusters in that it uses a
new application stack/module system based on EasyBuild. A video tutorial of module usage under this paradigm is
provided here; a longer class on EasyBuild, including how you can use it to build your own modules is here.

Key differences between EasyBuild and our legacy paradigm from a user perspective include:

• Hierarchies are replaced by toolchains. Right now, there are four:

– foss (“Free Open Source Software”): gcc compilers, OpenBLAS for linear algebra, OpenMPI for MPI, etc

– fosscuda: foss with CUDA support

– intel: Intel compilers, Intel MKL for linear algebra, Intel MPI

– intelcuda: intel with CUDA support

• Instead of loading modules individually (e.g., module load intel mkl impi), a user can just load the toolchain
(e.g., module load fosscuda/2020b).

• Modules load their dependencies, e.g.,

18 Chapter 3. Resources

https://easybuild.readthedocs.io
https://video.vt.edu/media/ARCA+Using+modules+to+access+software+packages+%28EasyBuild+version%29/0_nhj2cdjy/176584251
https://video.vt.edu/media/Using+EasyBuild+to+Access+and+Compile+Scientific+Software/1_jfcy5kc1/176584251

ARC Documentation, Release 1.0

$ module reset; module load GROMACS/2020.4-fosscuda-2020b; module list
Currently Loaded Modules:
1) shared 8) GCCcore/10.2.0 15) numactl/2.0.13-

→˓GCCcore-10.2.0 22) GDRCopy/2.1-GCCcore-10.2.0-CUDA-11.1.1 29) FFTW/3.3.8-gompic-
→˓2020b
2) gcc/9.2.0 9) zlib/1.2.11-GCCcore-10.2.0 16) XZ/5.2.5-GCCcore-

→˓10.2.0 23) UCX/1.9.0-GCCcore-10.2.0-CUDA-11.1.1 30) ScaLAPACK/2.1.0-
→˓gompic-2020b
3) slurm/slurm/19.05.5 10) binutils/2.35-GCCcore-10.2.0 17) libxml2/2.9.10-

→˓GCCcore-10.2.0 24) libfabric/1.11.0-GCCcore-10.2.0 31) fosscuda/2020b
4) apps 11) GCC/10.2.0 18) libpciaccess/0.16-

→˓GCCcore-10.2.0 25) PMIx/3.1.5-GCCcore-10.2.0 32) GROMACS/2020.4-
→˓fosscuda-2020b
5) site/infer/easybuild/setup 12) CUDAcore/11.1.1 19) hwloc/2.2.0-

→˓GCCcore-10.2.0 26) OpenMPI/4.0.5-gcccuda-2020b
6) useful_scripts 13) CUDA/11.1.1-GCC-10.2.0 20) libevent/2.1.12-

→˓GCCcore-10.2.0 27) OpenBLAS/0.3.12-GCC-10.2.0
7) DefaultModules 14) gcccuda/2020b 21) Check/0.15.2-

→˓GCCcore-10.2.0 28) gompic/2020b

• All modules are visible with module avail. So in many cases it is probably better to search with module
spider rather than printing the whole list.

• Some key system software, like the Slurm scheduler, are included in default modules. This means that module
purge can break important functionality. Use module reset instead.

• Lower-level software is included in the module structure (see, e.g., binutils in the GROMACS example above),
which should mean less risk of conflicts in adding new versions later.

• Environment variables (e.g., $SOFTWARE_LIB) available in our previous module system may not be provided.
Instead, EasyBuild typically provides $EBROOTSOFTWARE to point to the software installation location. So
for example, to link to NetCDF libraries, one might use -L$EBROOTCUDA/lib64 instead of the previous
-L$CUDA_LIB.

3.1.3 Cascades, CPU/GPU Cluster

Overview

Cascades is a 236-node system capable of tackling the full spectrum of computational workloads, from problems re-
quiring hundreds of compute cores to data-intensive problems requiring large amount of memory and storage resources.
Cascade contains four compute engines designed for distinct workloads.

• General - Distributed, scalable workloads. With Intel’s Broadwell processors, 2 16-core processors and 128
GB of memory on each node, this 190-node compute engine is suitable for traditional HPC jobs and large codes
using MPI.

• Very Large Memory - Graph analytics and very large datasets. With 3TB (3072 gigabytes) of memory, four
18-core processors and 6 1.8TB direct attached SAS hard drives, 400 GB SAS SSD drive, and one 2 TB NVMe
PCIe flash card , each of these two servers will enable analysis of large highly-connected datasets, in-memory
database applications, and speedier solution of other large problems.

• K80 GPU - Data visualization and code acceleration. There are four nodes in this compute engine which have -
two Nvidia K80 (Kepler) GPUs, 512 GB of memory, and one 2 TB NVMe PCIe flash card.

• V100 GPU - Extremely fast execution of GPU-enabled codes. There are 40 nodes in this engine, although one
of these nodes is reserved for system maintenance. Each node is equipped with two Intel Skylake Xeon Gold 3

3.1. Computational Resources 19

ARC Documentation, Release 1.0

Ghz CPU’s, amounting to 24 cores on each node. There is 384 GB of memory, and two NVIDIA V100 (Volta)
GPU’s. Each of these GPU’s is capable of more than 7.8 TeraFLOPS of double precision performance.

Technical Specifications

COM-
PUTE
EN-
GINE

HOSTSCPU CORESMEM-
ORY

LOCAL STORAGE OTHER
FEA-
TURES

General 190 ca007-
ca196

2 x E5-2683v4
2.1GHz (Broad-
well)

32 128
GB,
2400
MHz

1.8TB 10K RPM SAS200 GB SSD

Very
Large
Memory

2 ca001-
ca002

4 x E7-8867v4
2.4 GHz (Broad-
well)

72 3 TB,
2400
MHz

3.6 TB (2 x 1.8 TB) 10K RPM SAS
(RAID 0)6-400 GB SSD (RAID 1) 2
TB NVMe PCIe

K80
GPU

4 ca003-
ca006

2 x E5-2683v4
2.1GHz (Broad-
well)

32 512GB,
2400MHz

3.6 TB (2 x 1.8 TB) 10K RPM SAS
(RAID 0)2-400 GB SSD (RAID 1) 2
TB NVMe PCIe

2-
NVIDIA
K80
GPU

V100
GPU

40 ca197-
ca236

2 x Intel Xeon
Gold 6136
3.0GHz (Sky-
lake)

24 384GB,
2666MHz

2-400 GB SSD (RAID 1) 2-
NVIDIA
V100
GPU

Notes:

• K80 GPU Notes: There are 4 CUDA Devices. Although the K80s are a single physical device in 1 PCIe slot,
there are 2 separate GPU chips inside. They will be shown as 4 separate devices to CUDA code. nvidia-smi will
show this.

• All nodes have locally mounted SAS and SSDs. /scratch-local (and $TMPDIR) point to the SAS drive and
/scratch-ssd points to the SSD on each node. On large memory and GPU nodes, which have multiple of each
drive, the storage across the SSDs are combined in /scratch-ssd (RAID 0) and the SAS drives are mirrored
(RAID 1) for redundancy.

Network:

• 100 Gbps Infiniband interconnect provides low latency communication between compute nodes for MPI traffic.

• 10 Gbps Ethernet interconnect provides high speed connectivity and access to storage.

Policies

Cascades is governed by an allocation manager, meaning that in order to run most jobs, you must be an authorized user
of an allocation that has been submitted and approved. For more on allocations, click here. The Cascades partitions
(queues) are:

• normal_q for production (research) runs.

• largemem_q for production (research) runs on the large memory nodes.

• dev_q for short testing, debugging, and interactive sessions. dev_q provides slightly elevated job priority to
facilitate code development and job testing prior to production runs.

• k80_q for runs that require access to K80 GPU nodes

20 Chapter 3. Resources

ARC Documentation, Release 1.0

• v100_normal_q for production (research) runs with the V100 nodes

• v100_dev_q short testing, debugging, and interactive sessions with the V100 nodes

The Cascades partition (queue) settings are:

PARTITION NORMAL_Q LARGE-
MEM_Q

DEV_Q K80_Q V100_NORMALV100_DEV

Access to ca007-ca196 ca001-
ca002

ca007-ca196 ca003-
ca006

ca197-ca236 ca197-ca236

Max Jobs 24 per user, 48
per allocation

1 per
user

1 per user 4 per user,
6 per allo-
cation

8 per user, 12
per allocation

1 per user

Max Nodes 32 per user, 48
per allocation

1 per
user

32 per user, 48
per allocation

4 per user 12 per user, 24
per allocation

12 per user,
24 per allo-
cation

Max Cores 1,024 per user,
1,536 per allo-
cation

72 per
user

1,024 per user,
1536 per allo-
cation

128 per
user

288 per user,
576 per alloca-
tion

336 per user

Max Memory
(calculated, not
enforced)

4 TB per user,
6 TB per allo-
cation

3 TB
per
user

4 TB per user,
6 TB per allo-
cation

2 TB per
user

4 TB per user,
6 TB per allo-
cation

1 TB per
user

Max Walltime 144 hr 144 hr 2 hr 144 hr 144 hr 2 hr
Max Core-Hours 73,728 per user 10,368

per
user

256 per user 9,216 per
user

20,736 per
user

168 per user

Notes:

• Shared node access: more than one job can run on a node

• The micro-architecture on the V100 nodes is newer than (and distinct from) the Broadwell nodes. For best
performance and compatibility, programs that are to run on V100 nodes should be compiled on a V100 node.
Note that the login nodes are Broadwell nodes, so compilation on a V100 node should be done as part of the
batch job, or during an interactive job on a V100 node (see below).

Access

Cascades can be accessed via one of the two login nodes:

• cascades1.arc.vt.edu

• cascades2.arc.vt.edu

Users may also use Open OnDemand to access the cluster.

3.1. Computational Resources 21

ARC Documentation, Release 1.0

Job Submission

Access to all compute nodes is controlled via the Slurm resource manager; see the Slurm documentation for additional
usage information. Example resource requests on Cascades include:

#Request exclusive access to all resources on 2 nodes
#SBATCH --nodes=2
#SBATCH --exclusive

#Request 4 cores (on any number of nodes)
#SBATCH --ntasks=4

#Request 2 nodes with 12 tasks running on each
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=12

#Request 12 tasks with 20GB memory per core
#SBATCH --ntasks=12
#SBATCH --mem-per-cpu=20G

#Request one NVIDIA V100 GPU and 100GB memory
#SBATCH --nodes=1 #(implies --ntasks=1 unless otherwise specified)
#SBATCH --partition=v100_normal_q
#SBATCH --gres=gpu:1
#SBATCH --mem=100G

3.1.4 DragonsTooth, High-Throughput Computing

Overview

DragonsTooth is a 48-node system designed to support general batch HPC jobs. The table below lists the technical
details of each DragonsTooth node. Nodes are connected to each other and to storage via 10 gigabit ethernet (10GbE),
a communication channel with high bandwidth but higher latency than InfiniBand (IB). As a result, DragonsTooth is
better suited to jobs that require less internode communication and/or less I/O intearction with non-local storage than
NewRiver, which has similar nodes but a low-latency IB interconnect. To allow I/O-intensive jobs, DragonsTooth nodes
are each outfitted with nearly 2 TB of solid state local disk. DragonsTooth was released to the Virginia Tech research
community in August 2016. In November of 2018, DragonsTooth was reprovisioned with Slurm as its scheduler as a
replacement for Moab/Torque.

Technical Specifications

Component Specification
CPU 2 x Intel Xeon E5-2680v3 (Haswell) 2.5 GHz 12-core
Memory 256 GB 2133 MHz DDR4
Local Storage 4 x 480 GB SSD Drives
Theoretical Peak (DP) 806 GFlops/s

22 Chapter 3. Resources

ARC Documentation, Release 1.0

Policies

Note: DragonsTooth is governed by an allocation manager, meaning that in order to run most jobs on it, you must be
an authorized user of an allocation that has been submitted and approved. For more on allocations, click here.

As described above, communications between nodes and between a node and storage will have higher latency on
DragonsTooth than on other ARC clusters. For this reason the queue structure is designed to allow more jobs and
longer-running jobs than on other ARC clusters. DragonsTooth has two partitions (queues):

• normal_q for production (research) runs.

• dev_q for short testing, debugging, and interactive sessions. dev_q provides slightly elevated job priority to
facilitate code development and job testing prior to production runs.

The settings for the partitions are:

Partition normal_q dev_q
Access to dt003-dt048 dt003-dt048
Max Jobs 288 per user 432 per allocation 1 per user
Max Nodes 12 per user 18 per allocation 12 per user
Max Core-Hours* 34,560 per user 51,840 per allocation 96 per user
Max Walltime 30 days 2 hr

Other notes:

• Shared node access: more than one job can run on a node.

*A user cannot, at any one time, have more than this many core-hours allocated across all of their running jobs. So
you can run long jobs or large/many jobs, but not both. For illustration, the following table describes how many nodes
a user can allocate for a given amount of time:

Walltime Max Nodes (per user) Max Nodes (per allocation)
72 hr (3 days) 12 18
144 hr (6 days) 10 15
360 hr (15 days) 4 6
720 hr (30 days) 2 3

Access

DragonsTooth can be accessed via one of the two login nodes:

• dragonstooth1.arc.vt.edu

• dragonstooth2.arc.vt.edu

Users may also use Open OnDemand to access the cluster.

3.1. Computational Resources 23

ARC Documentation, Release 1.0

Job Submission

Access to all compute nodes is controlled via the Slurm resource manager; see the Slurm documentation for additional
usage information. Example resource requests on Cascades include:

#Request exclusive access to all resources on 2 nodes
#SBATCH --nodes=2
#SBATCH --exclusive

#Request 4 cores (on any number of nodes)
#SBATCH --ntasks=4

#Request 2 nodes with 12 tasks running on each
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=12

#Request 12 tasks with 20GB memory per core
#SBATCH --ntasks=12
#SBATCH --mem-per-cpu=20G

3.1.5 Huckleberry

Warning: Huckleberry is scheduled to be retired in Spring 2022. Please consider one of our other GPU resources
for deep learning applications.

Overview

Huckleberry is a high performance computing system targeted at deep learning applications. Huckleberry consists of
two login nodes and Fourteen IBM Minksy S822LC compute nodes. Each of the compute nodes is equipped with:

• Two IBM Power8 CPU (3.26 GHz) with 256 GB of memory

• Four NVIDIA P100 GPU with 16 GB of memory each

• NVLink interfaces connecting CPU and GPU memory spaces

• Mellanox EDR Infiniband (100 GB/s) interconnect

• CentOS 7 OS

Login

To access Huckleberry, users should login to: ssh huckleberry1.arc.vt.edu

24 Chapter 3. Resources

ARC Documentation, Release 1.0

Basic Job Submission and Monitoring

The huckleberry normal_q imposes the following limits

• maximum walltime of 3 days

• maximum of three nodes per user The huckleberry large_q imposes the following limits

• maximum walltime of 1 day

• maximum of four nodes per user The current configuration allows users to run jobs either through the batch
scheduler or interactively. The following is a basic hello world job submission script requesting 500 GB memory
and all four Pascal P100 GPU on a compute node:

#!/bin/bash

#SBATCH -J hello-world
#SBATCH -p normal_q
#SBATCH -p normal_q
#SBATCH -N 1 # this will not assign the node exclusively. See the note above for details
#SBATCH -t 10:00
#SBATCH --mem=500G
#SBATCH --gres=gpu:4
#SBATCH --account=(YOUR ALLOCATION ID)
echo hello world

NOTE: asking for -N 1 without specifying how many cores per node will default to only 1 core (equivalent to -n 1).
If you would like to get the full node exclusively, you should ask for all the cores on the node using the flag -n, or, you
could use the --exclusive flag.

To learn how to submit or monitor your jobs, please see the Slurm documentation.

In many cases jobs will require fewer than the four GPU available on each huckleberry compute node. GPU can be
requested as a generic resource (GRES) through Slurm by requesting a specific number of processor cores and GPU.
To request one processor core and one GPU in an interactive session with 8 GB of memory per processor core,

interact --nodes=1 --ntasks-per-node=8 -l walltime=0:10:00 --mem-per-cpu=8G --
→˓gres=gpu:1 -A yourallocation

Slurm will set the $CUDA_VISIBLE_DEVICES environment variable automatically based on your request. Multiple
processor cores and/or GPU can be requested in the same manner. For example, to request two GPU and 10 CPU
cores, one might run

interact -n10 -t 10:00 --mem-per-cpu=4G --gres=gpu:2

The Power8 CPU are viewed by Slurm as 20 processor cores.

Software

Software modules are available on huckleberry and function in the same manner as other ARC systems, e.g. the
following syntax will load the module for cuda module load cuda. Additionally, IBM’s PowerAI deep learning
software are installed under within the Anaconda3 module. A few brief tutorials are provided below.

3.1. Computational Resources 25

ARC Documentation, Release 1.0

Python

For users that would like to customize their Python environment, we provide online documentation for best practices
to manage Python on ARC systems. For more detailed usages, please refer to part below.

Jupyter Notebooks

Jupyter notebooks are included in the anaconda python distribution installed on huckleberry. An example script to
launch a job on a compute node is here:

#!/bin/bash

#SBATCH -J start-jupyter
#SBATCH -n 4
##SBATCH --exclusive
#SBATCH --gres=gpu:pascal:1
#SBATCH --mem=120G
#SBATCH -t 24:00:00
#SBATCH -p normal_q

echo "starting jupyter notebook"

#PATH=/home/mcclurej/anaconda2/bin:$PATH
export PATH=/opt/apps/anaconda2/4.4.0.1/bin:$PATH

module load cuda
source /opt/DL/caffe-ibm/bin/caffe-activate
source /opt/DL/openblas/bin/openblas-activate
source /opt/DL/tensorflow/bin/tensorflow-activate
source /opt/DL/theano/bin/theano-activate
source /opt/DL/torch/bin/torch-activate
source /opt/DL/digits/bin/digits-activate

#let ipnport=($UID-6025)%65274
#echo $ipnport >> ipnport.txt

#jupyter notebook --ip=$HOSTNAME --port=5034 --no-browser > jupyter.server
unset XDG_RUNTIME_DIR

GPUID=$(echo $CUDA_VISIBLE_DEVICES | cut -c1)
port=`expr 5030 + $GPUID`

jupyter notebook --ip=$HOSTNAME --port=$port --no-browser &> jupyter.hostname

exit

This will start a jupyter notebook with an appropriate hostname and port so that the session can be opened in a browser
on the login node. When using firefox, it is recommended to use X-forwarding and compression when connecting to
huckleberry as follows

ssh -X -C huckleberry1.arc.vt.edu

26 Chapter 3. Resources

ARC Documentation, Release 1.0

Download the juypter-server script to your home directory with Then if the script above is in the file jupyter-server.
sh, you can start the notebook by submitting a batch job with

sbatch jupyter-server.sh &

The script will populate the file jupyter.hostname with the appropriate URL to interact with the remote session.
This URL can be extracted from the file as follows

URL=$(grep -A2 URL jupyter.hostname | tail -1)

Then open a firefox window from the login node

firefox --no-remote -url $URL &

The jupyter notebook should open in the firefox browser, running on the compute node assigned to you job.

PowerAI

Many of the PowerAI tools depend on cuda, and your $PATH and $LD_LIBRARY_PATH variables should be set accord-
ingly:

export PATH=/usr/local/cuda-8.0/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:$LD_LIBRARY_PATH

Theano depends on pycuda, which is not included in the centrally-provided python. It can be installed locally as follows
(see our python user guide for additional details):

pip install --user pycuda

DIGITS wraps several of the popular deep learning tools into an easy-to-use web interface. To open the DIGITS
interface, first establish an instance of the DIGITS server by submitting a batch job that launches digits-devserver
on one of the compute nodes. The following script will start the digits server on a compute node with 2 hours of
walltime:

#!/bin/bash

#SBATCH -J digits-devserver
#SBATCH -N 1
#SBATCH -t 24:00:00

echo "starting digits server"

module load cuda
source /opt/DL/caffe-ibm/bin/caffe-activate
source /opt/DL/openblas/bin/openblas-activate
source /opt/DL/tensorflow/bin/tensorflow-activate
source /opt/DL/theano/bin/theano-activate
source /opt/DL/torch/bin/torch-activate
source /opt/DL/digits/bin/digits-activate

digits-devserver

exit

3.1. Computational Resources 27

ARC Documentation, Release 1.0

The job should be launched by typing

sbatch digits-devserver.sh

Type squeue to identify which compute node the job is running on. Once the server is running on the compute node,
you will be able to load DIGITS from a browser that runs on the login node. To start firefox from the login node, type

firefox --no-remote &

If your job is running on compute node hu001, you should point your browser at http://hu001:5000 to open the
digits interface (if your job is running on another compute node, you should enter it instead of hu001). DIGITS
essentially provides a portal to control the jobs that run on the compute node. To train a basic model, a good starting
point are the basic examples included in DIGITS. Input data has already been downloaded to the ARC filesystem. A
local copy can be obtained by running

tar xvzf /home/TRAINING/mnist.tar.gz

Once the data has been downloaded, you can train a model by following the steps described at https://github.com/
NVIDIA/DIGITS/blob/master/docs/GettingStarted.md.

NUMA

Understanding non-uniform memory access (NUMA) patterns important to get the full benefit of the S822LC compute
nodes on huckleberry. The memory bandwidth associated with data movement within each compute node is summa-
rized in the diagram below. Note that each Power8 CPU is coupled to two P100 GPU through NVLink, which supports
bi-directional data transfer rates of 80 GB/s. The theoretical maximum memory bandwidth for each Power8 CPU is
115 GB/s. The theoretical maximum memory bandwidth for each NVIDIA P100 GPU is 720 GB/s.

28 Chapter 3. Resources

https://github.com/NVIDIA/DIGITS/blob/master/docs/GettingStarted.md
https://github.com/NVIDIA/DIGITS/blob/master/docs/GettingStarted.md

ARC Documentation, Release 1.0

PowerAI Installation & Usage (Updated in April 2019)

All testing(on TF, Pytorch, Keras(TF backend), Caffe) has been performed with python/3.6 on Huckleberry GPU nodes,
you could see testing demonstrations and example python scripts from this shared Google Drive Folder

Part 1. PowerAI Library Usage (PREFERRED)

step 1: request for GPU nodes
salloc --partition=normal_q --nodes=1 --tasks-per-node=10 --gres=gpu:1 bash
step 2: load all necessary modules
module load gcc cuda Anaconda3 jdk
step 3: activate the virtual environment
source activate powerai16_ibm
step 4: test with simple code examples, Google drive above
python test_pytorch.py
python test_TF_multiGPUs.py
python test_keras.py
step 5: for new packages(take beautifulsoup4 for example)

(continues on next page)

3.1. Computational Resources 29

https://drive.google.com/open?id=1n3aEGnQdM3NU6XUyDHEAd5HQM0v5tfvl

ARC Documentation, Release 1.0

(continued from previous page)

pip install --user beautifulsoup4 # on hulogin1/hulogin2
or pip install --user --no-deps keras

Part 2. Installation

First make sure you are in hulogin1/hulogin2

module load gcc cuda Anaconda3 jdk
java -version
conda create -n powerai36 python==3.6 # create a virtual environment
source activate powerai36 # activate virtual environment
conda config --prepend channels https://public.dhe.ibm.com/ibmdl/export/pub/software/
→˓server/ibm-ai/conda/
if things don't work, add two channels and run commands showing below
conda config --add default_channels https://repo.anaconda.com/pkgs/main
conda config --add default_channels https://repo.anaconda.com/pkgs/r
install ibm powerai meta-package via conda
conda install powerai
keep type 'enter' and then enter 1 for license acceptance
export IBM_POWERAI_LICENSE_ACCEPT=yes
you will need to update the jupyter package
conda install jupyter notebook

Please feel free to contact us if you have seen issues or have special requirements over using ML/DL/Simu/Vis packages
on Huckleberry.

3.2 List of GPUs on ARC Resources

Need a GPU? Here is a list of where you can find them on ARC’s clusters:

Architecture Cluster Partition Number
NVIDIA A100-80G TinkerCliffs a100_normal_q, a100_dev_q 32 (4 nodes, 8 GPU/node)
NVIDIA Volta V100 Infer v100_normal_q, v100_dev_q 4 (2 nodes, 2 GPU/node)
NVIDIA Volta V100 Cascades* v100_normal_q, v100_dev_q 76 (38 nodes, 2 GPU/node)
NVIDIA Tesla T4 Infer t4_normal_q, t4_dev_q 18 (18 nodes, 1 GPU/node)
NVIDIA Tesla P100 Infer p100_normal_q, p100_dev_q 80 (40 nodes, 2 GPU/node)
NVIDIA Tesla P100 Huckleberry normal_q 56 (14 nodes, 4 GPU/node)
NVIDIA Tesla K80 Cascades* k80_q 16 (4 nodes, 4 GPU/node)

* ARC is preparing to move these nodes to Infer.

30 Chapter 3. Resources

https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/v100/
https://www.nvidia.com/en-us/data-center/v100/
https://www.nvidia.com/en-us/data-center/tesla-t4/
https://www.nvidia.com/en-us/data-center/tesla-p100/
https://www.nvidia.com/en-us/data-center/tesla-p100/
https://www.nvidia.com/en-gb/data-center/tesla-k80/

ARC Documentation, Release 1.0

3.3 Open OnDemand

Open OnDemand is a web portal that provides access to ARC HPC clusters. It facilitates clusters’ access and job
management without the need for Linux experience or any installations on the client-side. The only requirement is an
up-to-date web browser. Firefox or Chrome are preferred.

3.3.1 Features

OnDemand provides the following features

• File Management and Transfer

• Job Management

• Shell Access

• Interactive Apps

3.3.2 Usage instructions

• In order to use OnDemand, you will need to be using the university network or on VPN (VT Traffic over SSL
VPN)

• Once connected, go to either:

– https://ondemand.arc.vt.edu (Legacy site: Older version)

– https://ood.arc.vt.edu (New site: Newer version and features, but still under development in places)

• Then, you can log in using your VT credentials (PID and password). If already logged into another VT site, you
may not need to enter any credentials at all.

3.3. Open OnDemand 31

https://ondemand.arc.vt.edu
https://ood.arc.vt.edu

ARC Documentation, Release 1.0

3.3.3 Examples

OnDemand provides interactive apps on each of the clusters, as shown in the image below.

See also our video tutorial.

For complete documentation, please visit Ohio Supercomputer Center, which develops Open OnDemand detailed doc-
umentation pages.

3.4 Storage Resources

3.4.1 Overview

ARC offers several different storage options for users’ data:

32 Chapter 3. Resources

https://video.vt.edu/media/ARCA+Open+OnDemand+for+Browser-based+Cluster+Access/1_nkp1ebuu/176584251
https://www.osc.edu/resources/online_portals/ondemand
https://www.osc.edu/resources/online_portals/ondemand

ARC Documentation, Release 1.0

Name Intent File
Sys-
tem

Envi-
ron-
ment
Vari-
able

Per User Maximum Data
Lifes-
pan

Available
On

Home Long-term storage
of files

Qumulo $HOME 640 GB 1 million files Un-
lim-
ited

Login and
Compute
Nodes

Group (Cascades,
DragonsTooth,
Huckleberry)

Long-term storage
of shared, group
files

GPFS - n/a - 10 TB, 5 million files per
faculty researcher (Expand-
able via investment)

Un-
lim-
ited

Login and
Compute
Nodes

Project (Tinker-
Cliffs, Infer)

Long-term storage
of shared, group
files

BeeGFS - n/a - 25 TB, 5 million files per
faculty researcher (Expand-
able via investment)

Un-
lim-
ited

Login and
Compute
Nodes

Work (Cascades,
DragonsTooth,
Huckleberry)

Fast I/O, Tempo-
rary storage

GPFS $WORK 14 TB, 3 million files 120
days

Login and
Compute
Nodes

Work (Tinker-
Cliffs, Infer)

Fast I/O, Tempo-
rary storage

BeeGFS $WORK 1 TB, 1 million files Un-
lim-
ited

Login and
Compute
Nodes

Archive Long-term storage
for infrequently-
accessed files

GPFS $ARCHIVE- Un-
lim-
ited

Login
Nodes

Local Scratch Local disk (hard
drives)

$TM-
PDIR

Size of node hard drive Length
of
Job

Compute
Nodes

Memory (tmpfs) Very fast I/O Mem-
ory
(RAM)

$TMPFS Size of node memory allo-
cated to job

Length
of
Job

Compute
Nodes

Each is described in the sections that follow.

3.4.2 Home

Home provides long-term storage for system-specific data or files, such as installed programs or compiled executables.
Home can be reached the variable $HOME, so if a user wishes to navigate to their Home directory, they can simply type
cd $HOME. Each user is provided a maximum of 640 GB in their Home directories (across all systems). When a user
exceeds the soft limit, they are given a grace period after which they can no longer add any files to their Home directory
until they are below the soft limit. Home directories are also subject to a 690 GB hard limit; users Home directories
are not allowed to exceed this limit. Note that running jobs fail if they try to write to a Home directory after the soft
limit grace period is expired or when the hard limit is reached.

3.4. Storage Resources 33

ARC Documentation, Release 1.0

3.4.3 Group and Project

Project (on TinkerCliffs and Infer) and Group (on Cascades, DragonsTooth, and Huckleberry) provide long-term stor-
age for files shared among a research project or group, facilitating collaboration and data exchange within the group.
Each Virginia Tech faculty member can request group storage up to the prescribed limit at no cost by requesting a stor-
age allocation via ColdFront. Additional storage may be purchased through the investment computing or cost center
programs.

Quotas on Project

The file system that provides Project and Work directories on TinkerCliffs and Infer does quotas based on the group ID
(GID) associated with files. This means that:

• Files in your Work directory can count against your Project quota if they have that project’s GID

• Files in your Project directory can count against your Work quota if they have your personal GID

You can check your Project and Work quotas with the quota command. You can check the GID associated with your
files with ll (the same as ls -l) and can change the group with chgrp (chgrp -R for recursive on a directory). You
can find files in a more automated fashion with find – see the example below. As an example, here we find some files
in /projects/myproject that are owned by mypid:

[mypid@tinkercliffs2 ~]$ find /projects/myproject/test -group mypid
/projects/myproject/test
/projects/myproject/test/datafile
/projects/myproject/test/test.txt
[mypid@tinkercliffs2 ~]$ ls -ld /projects/myproject/test/
drwxrwxr-x 2 mypid mypid 2 Oct 4 08:43 /projects/myproject/test/
[mypid@tinkercliffs2 ~]$ ls -lh /projects/myproject/test/
total 1.1G
-rw-rw-r-- 1 mypid mypid 1.0G Oct 4 08:43 datafile
-rw-rw-r-- 1 mypid mypid 5 Jun 8 10:51 test.txt

These files will count against mypid’s Work quota. We change their ownership to the associated group with chgrp
-R:

[mypid@tinkercliffs2 ~]$ chgrp -R arc.myproject /projects/myproject/test
[mypid@tinkercliffs2 ~]$ ls -ld /projects/myproject/test/
drwxrwxr-x 2 mypid arc.myproject 2 Oct 4 08:43 /projects/myproject/test/
[mypid@tinkercliffs2 ~]$ ls -lh /projects/myproject/test/
total 1.1G
-rw-rw-r-- 1 mypid arc.myproject 1.0G Oct 4 08:43 datafile
-rw-rw-r-- 1 mypid arc.myproject 5 Jun 8 10:51 test.txt

The files will now count against the Project quota.

A more automated example would be to have find both locate and change ownership of the files:

[mypid@tinkercliffs2 ~]$ ls -lh /projects/myproject/test/
total 1.1G
-rw-rw-r-- 1 mypid mypid 1.0G Oct 4 08:43 datafile
-rw-rw-r-- 1 mypid mypid 5 Jun 8 10:51 test.txt
[mypid@tinkercliffs2 ~]$ find /projects/myproject/test -group mypid -exec chgrp arc.
→˓myproject {} +
[mypid@tinkercliffs2 ~]$ ls -lh /projects/myproject/test/

(continues on next page)

34 Chapter 3. Resources

https://coldfront.arc.vt.edu

ARC Documentation, Release 1.0

(continued from previous page)

total 1.1G
-rw-rw-r-- 1 mypid arc.myproject 1.0G Oct 4 08:43 datafile
-rw-rw-r-- 1 mypid arc.myproject 5 Jun 8 10:51 test.txt

3.4.4 Work

Work provides users with fast, user-focused storage for use during simulations or other research computing applications.
However, it encompasses two paradigms depending on the cluster where it is being used:

• On TinkerCliffs and Infer, it provides 1 TB of user-focused storage that is not subject to a time limit. Note that
this quota is enforced by the GID associated with files and not by directory, so files in Project storage can wind
up being counted against your Work quota; see here for details and fixes.

• On Cascades, DragonsTooth, and Huckleberry, it provides up to 14 TB of space. However, ARC reserves the
right to purge files older than 120 days from this file system. It is therefore aimed at temporary files, checkpoint
files, and other scratch files that might be created during a run but are not needed long-term. Work for a given
system can be reached via the variable $WORK. So if a user wishes to navigate to Work directory, they can simply
type cd $WORK.

3.4.5 Archive

Archive provides users with long-term storage for data that does not need to be frequently accessed i.e. storing impor-
tant/historical results. Archive is accessible from all ARC’s systems. Archive is not mounted on compute nodes, so
running jobs cannot access files on it. Archive can be reached the variable $ARCHIVE, so if a user wishes to navigate
to their Archive directory, they can simply type cd $ARCHIVE.

Best Practices for archival storage

Because the ARCHIVE filesystem is backed by tape (a high capacity but very high latency medium), it is very inefficient
and disruptive to do file operations (especially on lots of small files) on the archive filesystem itself. Archival systems
are designed to move and replicate very large files; ideally users will tar all related files into singular, large files.
Procedures are below:

To place data in $ARCHIVE:

1. create a tarball containing the files in your $HOME (or $WORK) directory

2. copy the tarball to the $ARCHIVE filesystem (use rsync in case the transfer were to fail)

To retrieve data from $ARCHIVE:

1. copy the tarball back to your $HOME (or $WORK) directory (use rsync in case the transfer were to fail).

2. untar the file on the login node in your $HOME (or $WORK) directory. Directories can be tarred up in parallel with,
for example, gnu parallel (available via the parallel module). This line will create a tarball for each directory
more than 180 days old:

find . -maxdepth 1 -type d -mtime +180 | parallel [[-e {}.tar.gz]] || tar -czf {}.tar.
→˓gz {}

The resulting tarballs can then be moved to Archive and directories can then be removed. (Directories can also be
removed automatically by providing the --remove-files flag to tar, but this flag should of course be used with
caution.)

3.4. Storage Resources 35

https://www.gnu.org/software/parallel/

ARC Documentation, Release 1.0

3.4.6 Local Scratch

Running jobs are given a workspace on the local hard drive on each compute node. The path to this space is specified
in the $TMPDIR environment variable. This provides another option for users who would prefer to do I/O to local disk
(such as for some kinds of big data tasks). Please note that any files in local scratch are removed at the end of a job, so
any results or files to be kept after the job ends must be copied to Work or Home.

3.4.7 Memory

Running jobs have access to an in-memory mount on compute nodes via the $TMPFS environment variable. This should
provide very fast read/write speeds for jobs doing I/O to files that fit in memory (see the system documentation for the
amount of memory per node on each system). Please note that these files are removed at the end of a job, so any results
or files to be kept after the job ends must be copied to Work or Home.

3.4.8 Checking Usage

You can check your current storage usage (in addition to your compute allocation usage) with the quota command:

[mypid@tinkercliffs2 ~]$ quota
USER FILESYS/SET DATA (GiB) QUOTA (GiB) FILES QUOTA␣
→˓ NOTE
mypid /home 584.2 596 - -

BEEGFS
mypid /projects/myproject1 109.3 931
mypid /projects/myproject2 2648.4 25600
mypid /work/mypid 2.7 931

36 Chapter 3. Resources

CHAPTER

FOUR

SOFTWARE

The following pages describe the software packages installed on ARC's systems and how to use them. To access a given
software install, please use the module system. Your are also welcome to install your own software; see here for details.

Contents:

4.1 Examples

ARC maintains a git repository of example submission scripts here.

To, for example, run the stream example on TinkerCliffs using their personal allocation, a user might log into
TinkerCliffs and issue the following commands:

#clone the repository
git clone git@github.com:AdvancedResearchComputing/examples.git

#change to the stream directory
cd examples/stream

#submit the job (using your personal allocation)
sbatch -Apersonal stream_tinkercliffs_rome.sh

The output would then be in the file slurm-XXXXXX.out where XXXXXX represents the job number.

4.2 Table of Software on ARC Systems

SOFTWARE DESCRIPTION CLUSTER
guppyGPU SOFTWAREDESCRIPTION INFER4.5.2
julia Julia for numerical computing INFER1.6.1-fosscuda-2020b1.6.1-foss-2020bTINKERCLIFFS1.6.2-foss-2020b1.6.1-gomkl-2020b1.6.1-foss-2020b
matlab MATLAB is a programming and numeric computing platform INFERR2021aR2022bTINKERCLIFFSR2022bR2021a
AlphaFoldData ALPHAFOLDDATADESCRIPTION INFER2022.02
guppy GUPPYDESCRIPTION INFER6.0.1
StarCCM+ STARCCM+DESCRIPTION INFER15.04.010TINKERCLIFFS17.02.008
tinker9 Molecular Design Software INFER1.4.0-nvhpc-21.11
HDF5 HDF5 is a data model, library, and file format for storing and managing data. It supports an unlimited variety of datatypes, and is designed for flexible and efficient I/O and for high volume and complex data. TINKERCLIFFS1.10.6-gompi-2020a1.10.7-iimpi-2021a1.10.2-intel-2019b1.10.5-gompi-2019b1.10.6-intel-2019b1.12.0-gompi-2020a1.10.7-gompi-2021a1.12.1-gompi-2021b1.10.7-gompi-2020b1.10.8-iimpi-2021a1.12.2-gompi-2022a1.10.7-iompi-2021a1.10.2-iomkl-2019b1.10.5-iimpi-2019b
Automake Automake: GNU Standards-compliant Makefile generator TINKERCLIFFS1.16.4-GCCcore-11.2.01.16.2-GCCcore-10.2.01.16.5-GCCcore-11.3.01.16.1-GCCcore-8.2.01.16.1-GCCcore-9.3.01.15.1-GCCcore-8.3.01.16.1-GCCcore-8.3.01.16.3-GCCcore-10.3.01.16.5-GCCcore-12.2.0
gc The Boehm-Demers-Weiser conservative garbage collector can be used as a garbage collecting replacement for C malloc or C++ new. TINKERCLIFFS7.6.12-GCCcore-9.3.0
libsndfile Libsndfile is a C library for reading and writing files containing sampled sound (such as MS Windows WAV and the Apple/SGI AIFF format) through one standard library interface. TINKERCLIFFS1.0.31-GCCcore-10.3.01.0.28-GCCcore-8.3.01.0.28-GCCcore-9.3.01.0.28-GCCcore-10.2.0

continues on next page

37

https://github.com/AdvancedResearchComputing/examples

ARC Documentation, Release 1.0

Table 1 – continued from previous page
SOFTWARE DESCRIPTION CLUSTER
giflib giflib is a library for reading and writing gif images.It is API and ABI compatible with libungif which was in wide use whilethe LZW compression algorithm was patented. TINKERCLIFFS5.2.1-GCCcore-10.2.0
PyCharm PyCharm Community Edition: Python IDE for Professional Developers TINKERCLIFFS2021.1.12019.3.1
WRF The Weather Research and Forecasting (WRF) Model is a next-generation mesoscale numerical weather prediction system designed to serve both operational forecasting and atmospheric research needs. TINKERCLIFFS4.2.2-foss-2020b-dmpar4.2.2-foss-2020b-dm+sm4.1.3-intel-2019b-dmpar
lftp LFTP is a sophisticated ftp/http client, and a file transfer program supportinga number of network protocols. Like BASH, it has job control and uses the readline library forinput. It has bookmarks, a built-in mirror command, and can transfer several files in parallel.It was designed with reliability in mind. TINKERCLIFFS4.9.2-GCCcore-11.2.0
Bison Bison is a general-purpose parser generator that converts an annotated context-free grammar into a deterministic LR or generalized LR (GLR) parser employing LALR(1) parser tables. TINKERCLIFFS3.8.23.0.43.0.53.7.913.7.6-GCCcore-11.2.03.3.2-GCCcore-8.3.03.7.13.5.33.7.6-GCCcore-10.3.03.5.3-intel-2019b3.3.23.8.2-GCCcore-12.2.03.7.63.0.5-GCCcore-8.2.03.5.3-GCCcore-9.3.03.8.2-GCCcore-11.3.03.7.1-GCCcore-10.2.0
NAMD NAMD is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. TINKERCLIFFS2.13-foss-2020a-mpi
IJulia Julia kernel for Jupyter TINKERCLIFFS1.24.0-Julia-1.8.5
libyaml LibYAML is a YAML parser and emitter written in C. TINKERCLIFFS0.2.2-GCCcore-8.3.00.2.2-GCCcore-9.3.00.2.5-GCCcore-10.2.0
Go Go is an open source programming language that makes it easy to build simple, reliable, and efficient software. TINKERCLIFFS1.141.18.3
FFC The FEniCS Form Compiler (FFC) is a compiler for finite element variational forms. TINKERCLIFFS2019.1.0.post0-foss-2019b-Python-3.7.4
ls-dyna LS-Dyna software TINKERCLIFFSR12.0.010.2.0-intel-2019b13.0.0-intel-2019b12.0.0-intel-2019b
zlib zlib is designed to be a free, general-purpose, legally unencumbered – that is, not covered by any patents – lossless data-compression library for use on virtually any computer hardware and operating system. TINKERCLIFFS1.2.111.2.121.2.11-GCCcore-8.3.01.2.11-GCCcore-10.3.01.2.12-GCCcore-11.3.01.2.11-GCCcore-11.2.01.2.11-GCCcore-10.2.01.2.12-GCCcore-12.2.01.2.11-GCCcore-8.2.01.2.11-GCCcore-9.3.0
gmpy2 GMP/MPIR, MPFR, and MPC interface to Python 2.6+ and 3.x TINKERCLIFFS2.1.0b4-GCC-8.3.0
zstd Zstandard is a real-time compression algorithm, providing high compression ratios. It offers a very wide range of compression/speed trade-off, while being backed by a very fast decoder. It also offers a special mode for small data, called dictionary compression, and can create dictionaries from any sample set. TINKERCLIFFS1.4.9-GCCcore-10.3.01.4.5-GCCcore-10.2.01.5.0-GCCcore-11.2.01.4.4-GCCcore-9.3.01.5.2-GCCcore-11.3.0
R-bundle-Bioconductor Bioconductor provides tools for the analysis and coprehension of high-throughput genomic data. TINKERCLIFFS3.12-foss-2020b-R-4.0.3
VirtualGL VirtualGL is an open source toolkit that gives any Linux or Unix remote display software the ability to run OpenGL applications with full hardware acceleration. TINKERCLIFFS2.6.2-GCCcore-9.3.0
HMMER HMMER is used for searching sequence databases for homologs of protein sequences, and for making protein sequence alignments. It implements methods using probabilistic models called profile hidden Markov models (profile HMMs). Compared to BLAST, FASTA, and other sequence alignment and database search tools based on older scoring methodology, HMMER aims to be significantly more accurate and more able to detect remote homologs because of the strength of its underlying mathematical models. In the past, this strength came at significant computational expense, but in the new HMMER3 project, HMMER is now essentially as fast as BLAST. TINKERCLIFFS3.3.2-gompi-2020b3.3.2-gompi-2022a
libxslt Libxslt is the XSLT C library developed for the GNOME project (but usable outside of the Gnome platform). TINKERCLIFFS1.1.34-GCCcore-11.3.0
ncview Ncview is a visual browser for netCDF format files. Typically you would use ncview to get a quick and easy, push-button look at your netCDF files. You can view simple movies of the data, view along various dimensions, take a look at the actual data values, change color maps, invert the data, etc. TINKERCLIFFS2.1.8-iimpi-2021a
hwloc The Portable Hardware Locality (hwloc) software package provides a portable abstraction (across OS, versions, architectures, . . .) of the hierarchical topology of modern architectures, including NUMA memory nodes, sockets, shared caches, cores and simultaneous multithreading. It also gathers various system attributes such as cache and memory information as well as the locality of I/O devices such as network interfaces, InfiniBand HCAs or GPUs. It primarily aims at helping applications with gathering information about modern computing hardware so as to exploit it accordingly and efficiently. TINKERCLIFFS2.2.0-GCCcore-9.3.02.7.1-GCCcore-11.3.02.4.1-GCCcore-10.3.01.11.12-GCCcore-8.3.02.2.0-GCCcore-10.2.01.11.11-GCCcore-8.2.02.5.0-GCCcore-11.2.02.2.0-GCCcore-8.3.02.8.0-GCCcore-12.2.0
libunistring This library provides functions for manipulating Unicode strings and for manipulating C strings according to the Unicode standard. TINKERCLIFFS0.9.10-GCCcore-9.3.0
Subread High performance read alignment, quantification and mutation discovery TINKERCLIFFS2.0.3-GCC-11.2.02.0.3-GCC-10.3.0
gomkl GNU Compiler Collection (GCC) based compiler toolchain with OpenMPI and MKL TINKERCLIFFS2020a2021a2019a2020b
Z3 Z3 is a theorem prover from Microsoft Research. TINKERCLIFFS4.8.10-GCCcore-10.2.0
libsodium Sodium is a modern, easy-to-use software library for encryption, decryption, signatures, password hashing and more. TINKERCLIFFS1.0.18-GCCcore-11.3.0
matplotlib matplotlib is a python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms. matplotlib can be used in python scripts, the python and ipython shell, web application servers, and six graphical user interface toolkits. TINKERCLIFFS3.4.2-foss-2021a3.3.3-foss-2020b3.1.1-foss-2019b-Python-3.7.43.2.1-foss-2020a-Python-3.8.23.4.3-foss-2021b
Szip Szip compression software, providing lossless compression of scientific data TINKERCLIFFS2.1.1-GCCcore-10.3.02.1.1-GCCcore-11.2.02.1.1-GCCcore-10.2.02.1.1-GCCcore-8.3.02.1.1-GCCcore-9.3.02.1.1-GCCcore-11.3.0
FLAC FLAC stands for Free Lossless Audio Codec, an audio format similar to MP3, but lossless, meaningthat audio is compressed in FLAC without any loss in quality. TINKERCLIFFS1.3.3-GCCcore-10.2.01.3.3-GCCcore-10.3.0
c-ares c-ares is a C library for asynchronous DNS requests (including name resolves) TINKERCLIFFS1.17.2-GCCcore-10.3.01.18.1-GCCcore-11.3.0
RepeatScout De Novo Repeat Finder, Price A.L., Jones N.C. and Pevzner P.A. Developed and tested with our multiple sequence version of RepeatScout (1.0.6) TINKERCLIFFS1.0.6-GCC-11.3.0
CMake CMake, the cross-platform, open-source build system. CMake is a family of tools designed to build, test and package software. TINKERCLIFFS3.18.4-GCCcore-10.2.03.16.4-intel-2019b3.22.1-GCCcore-11.2.03.16.4-GCCcore-9.3.03.15.3-GCCcore-8.3.03.23.1-GCCcore-11.3.03.13.3-GCCcore-8.2.03.21.1-GCCcore-11.2.03.24.3-GCCcore-12.2.03.12.13.20.1-GCCcore-10.3.0
COMSOL COMSOL Multiphysics is a general-purpose software platform, based onadvanced numerical methods, for modeling and simulating physics-basedproblems. TINKERCLIFFS5.4.0.388
RMBlast RMBlast is a RepeatMasker compatible version of the standard NCBI BLAST suite. The primary difference between this distribution and the NCBI distribution is the addition of a new program ‘rmblastn’ for use with RepeatMasker and RepeatModeler. TINKERCLIFFS2.13.0-gompi-2022a
Biopython Biopython is a set of freely available tools for biological computation written in Python by an international team of developers. It is a distributed collaborative effort to develop Python libraries and applications which address the needs of current and future work in bioinformatics. TINKERCLIFFS1.78-foss-2020b1.75-intel-2019b-Python-3.7.41.78-foss-2020a-Python-3.8.21.79-foss-2021a
Gdk-Pixbuf The Gdk Pixbuf is a toolkit for image loading and pixel buffer manipulation. It is used by GTK+ 2 and GTK+ 3 to load and manipulate images. In the past it was distributed as part of GTK+ 2 but it was split off into a separate package in preparation for the change to GTK+ 3. TINKERCLIFFS2.40.0-GCCcore-9.3.02.40.0-GCCcore-10.2.02.42.6-GCCcore-10.3.0
LZO Portable lossless data compression library TINKERCLIFFS2.10-GCCcore-11.3.0
nlopt NLopt is a free/open-source library for nonlinear optimization TINKERCLIFFS2.7.1
GLM OpenGL Mathematics (GLM) is a header only C++ mathematics library for graphics software based on the OpenGL Shading Language (GLSL) specifications. TINKERCLIFFS0.9.9.8-GCCcore-8.3.0
nanoget Functions to extract information from Oxford Nanopore sequencing data and alignments TINKERCLIFFS1.18.1-foss-2021a
SWIG SWIG is a software development tool that connects programs written in C and C++ with a variety of high-level programming languages. TINKERCLIFFS4.0.1-GCCcore-9.3.04.0.1-GCCcore-8.3.03.0.12-GCCcore-8.3.04.0.2-GCCcore-11.2.0
IPython IPython provides a rich architecture for interactive computing with: Powerful interactive shells (terminal and Qt-based). A browser-based notebook with support for code, text, mathematical expressions, inline plots and other rich media. Support for interactive data visualization and use of GUI toolkits. Flexible, embeddable interpreters to load into your own projects. Easy to use, high performance tools for parallel computing. TINKERCLIFFS8.5.0-GCCcore-11.3.0
FriBidi The Free Implementation of the Unicode Bidirectional Algorithm. TINKERCLIFFS1.0.10-GCCcore-10.2.01.0.10-GCCcore-11.2.01.0.5-GCCcore-8.3.01.0.10-GCCcore-10.3.01.0.9-GCCcore-9.3.0
typing-extensions Typing Extensions – Backported and Experimental Type Hints for Python TINKERCLIFFS3.7.4.3-GCCcore-10.2.0
nodejs Node.js is a platform built on Chrome’s JavaScript runtime for easily building fast, scalable network applications. Node.js uses an event-driven, non-blocking I/O model that makes it lightweight and efficient, perfect for data-intensive real-time applications that run across distributed devices. TINKERCLIFFS12.19.0-GCCcore-10.2.014.17.0-GCCcore-10.3.012.16.1-GCCcore-9.3.0
FFTW.MPI FFTW is a C subroutine library for computing the discrete Fourier transform (DFT TINKERCLIFFS3.3.10-gompi-2022a3.3.10-gompi-2022b
SpaceRanger Space Ranger is a set of analysis pipelines that process Visium spatial RNA-seq outputand brightfield microscope images in order to detect tissue, align reads, generate feature-spot matrices,perform clustering and gene expression analysis, and place spots in spatial context on the slide image. TINKERCLIFFS1.2.2-GCC-9.3.0
libgeotiff Library for reading and writing coordinate system information from/to GeoTIFF files TINKERCLIFFS1.6.0-GCCcore-10.3.01.5.1-GCCcore-9.3.01.5.1-GCCcore-8.3.0
OpenMolcas OpenMolcas is a quantum chemistry software package TINKERCLIFFS19.11-intel-2019b-Python-3.7.418.09-intel-2019b-Python-3.7.4
PMIx Process Management for Exascale EnvironmentsPMI Exascale (PMIx) represents an attempt toprovide an extended version of the PMI standard specifically designedto support clusters up to and including exascale sizes. The overallobjective of the project is not to branch the existing pseudo-standarddefinitions - in fact, PMIx fully supports both of the existing PMI-1and PMI-2 APIs - but rather to (a) augment and extend those APIs toeliminate some current restrictions that impact scalability, and (b TINKERCLIFFS3.1.5-GCCcore-8.3.04.1.0-GCCcore-11.2.03.1.5-GCCcore-10.2.04.2.2-GCCcore-12.2.03.2.3-GCCcore-10.3.04.1.2-GCCcore-11.3.0

continues on next page

38 Chapter 4. Software

ARC Documentation, Release 1.0

Table 1 – continued from previous page
SOFTWARE DESCRIPTION CLUSTER
ncbi-vdb The SRA Toolkit and SDK from NCBI is a collection of tools and libraries for using data in the INSDC Sequence Read Archives. TINKERCLIFFS2.10.7-gompi-2020a
sympy SymPy is a Python library for symbolic mathematics. It aims to become a full-featured computer algebra system (CAS) while keeping the code as simple as possible in order to be comprehensible and easily extensible. SymPy is written entirely in Python and does not require any external libraries. TINKERCLIFFS1.5.1-foss-2019b-Python-3.7.4
CppUnit CppUnit is the C++ port of the famous JUnit framework for unit testing. TINKERCLIFFS1.15.1-GCCcore-11.3.01.15.1-GCCcore-10.3.0
RE2 RE2 is a fast, safe, thread-friendly alternative to backtracking regularexpression engines like those used in PCRE, Perl, and Python. It is a C++library. TINKERCLIFFS2022-02-01-GCCcore-11.2.02022-02-01-GCCcore-10.3.0
p7zip p7zip is a quick port of 7z.exe and 7za.exe (CLI version of7zip) for Unix. 7-Zip is a file archiver with highest compression ratio. TINKERCLIFFS17.04-GCCcore-11.3.0
LittleCMS Little CMS intends to be an OPEN SOURCE small-footprint color management engine, with special focus on accuracy and performance. TINKERCLIFFS2.12-GCCcore-10.3.02.11-GCCcore-10.2.02.9-GCCcore-9.3.02.9-GCCcore-8.3.0
MariaDB-connector-c MariaDB Connector/C is used to connect applications developed in C/C++ to MariaDB and MySQL databases. TINKERCLIFFS3.1.7-intel-2019b3.1.7-GCCcore-9.3.0
Anaconda3 Built to complement the rich, open source Python community,the Anaconda platform provides an enterprise-ready data analytics platform that empowers companies to adopt a modern open data science analytics architecture. TINKERCLIFFS2020.072020.11
pauvre Tools for plotting Oxford Nanopore and other long-read data TINKERCLIFFS0.2.3-foss-2021a
patchelf PatchELF is a small utility to modify the dynamic linker and RPATH of ELF executables. TINKERCLIFFS0.10-GCCcore-8.3.0
dxa DXA Dislocation Analysis TINKERCLIFFS1.3.6-foss-2020b
ABySS Assembly By Short Sequences - a de novo, parallel, paired-end sequence assembler TINKERCLIFFS2.1.5-gompi-2020a
lxml The lxml XML toolkit is a Pythonic binding for the C libraries libxml2 and libxslt. TINKERCLIFFS4.9.1-GCCcore-11.3.0
FFmpeg A complete, cross-platform solution to record, convert and stream audio and video. TINKERCLIFFS4.3.2-GCCcore-11.2.04.2.1-GCCcore-8.3.04.3.2-GCCcore-10.3.04.2.2-GCCcore-9.3.04.3.1-GCCcore-10.2.0
NVHPC C, C++ and Fortran compilers included with the NVIDIA HPC SDK (previously: PGI) TINKERCLIFFS21.220.7
OpenSSL The OpenSSL Project is a collaborative effort to develop a robust, commercial-grade, full-featured, and Open Source toolchain implementing the Secure Sockets Layer (SSL v2/v3) and Transport Layer Security (TLS v1) protocols as well as a full-strength general purpose cryptography library. TINKERCLIFFS1.1.1e-GCCcore-9.3.01.11.1.1e-intel-2019b
BCFtools Samtools is a suite of programs for interacting with high-throughput sequencing data. BCFtools - Reading/writing BCF2/VCF/gVCF files and calling/filtering/summarising SNP and short indel sequence variants TINKERCLIFFS1.11-GCC-10.2.01.10.2-GCC-9.3.0
Spark Spark is Hadoop MapReduce done in memory TINKERCLIFFS3.2.1-foss-2021b
utf8proc utf8proc is a small, clean C library that provides Unicode normalization, case-folding, and other operations for data in the UTF-8 encoding. TINKERCLIFFS2.5.0-GCCcore-10.2.02.6.1-GCCcore-11.2.02.6.1-GCCcore-10.3.0
PyYAML PyYAML is a YAML parser and emitter for the Python programming language. TINKERCLIFFS5.3.1-GCCcore-10.2.05.1.2-GCCcore-8.3.05.3-GCCcore-9.3.0
protobuf Google Protocol Buffers TINKERCLIFFS3.10.0-GCCcore-9.3.03.10.0-GCCcore-8.3.03.14.0-GCCcore-10.2.0
tcsh Tcsh is an enhanced, but completely compatible version of the Berkeley UNIX C shell (csh). It is a command language interpreter usable both as an interactive login shell and a shell script command processor. It includes a command-line editor, programmable word completion, spelling correction, a history mechanism, job control and a C-like syntax. TINKERCLIFFS6.22.03-GCCcore-10.2.06.22.02-GCCcore-8.3.0
gperf GNU gperf is a perfect hash function generator. For a given list of strings, it produces a hash function and hash table, in form of C or C++ code, for looking up a value depending on the input string. The hash function is perfect, which means that the hash table has no collisions, and the hash table lookup needs a single string comparison only. TINKERCLIFFS3.1-GCCcore-11.2.03.1-GCCcore-10.2.03.1-GCCcore-10.3.03.1-GCCcore-8.3.03.1-GCCcore-8.2.03.1-GCCcore-9.3.0
METIS METIS is a set of serial programs for partitioning graphs, partitioning finite element meshes, and producing fill reducing orderings for sparse matrices. The algorithms implemented in METIS are based on the multilevel recursive-bisection, multilevel k-way, and multi-constraint partitioning schemes. TINKERCLIFFS5.1.0-GCCcore-8.3.05.1.0-GCCcore-10.2.05.1.0-GCCcore-10.3.05.1.0-GCCcore-9.3.0
petsc4py petsc4py are Python bindings for PETSc, the Portable, Extensible Toolchain for Scientific Computation. TINKERCLIFFS3.12.0-foss-2019b-Python-3.7.4
MetaEuk MetaEuk is a modular toolkit designed for large-scale gene discovery and annotation in eukaryotic metagenomic contigs. TINKERCLIFFS4-GCC-10.2.0
dealii-9.2.0 SOFTWAREDESCRIPTION TINKERCLIFFSintel-2019b
X11 The X Window System (X11) is a windowing system for bitmap displays TINKERCLIFFS20210802-GCCcore-11.2.020190311-GCCcore-8.2.020190717-GCCcore-8.3.020201008-GCCcore-10.2.020200222-GCCcore-9.3.020210518-GCCcore-10.3.020200222-intel-2019b
pigz pigz, which stands for parallel implementation of gzip, is a fully functional replacement for gzip that exploits multiple processors and multiple cores to the hilt when compressing data. pigz was written by Mark Adler, and uses the zlib and pthread libraries. TINKERCLIFFS2.6-GCCcore-10.3.0
Autotools This bundle collect the standard GNU build tools: Autoconf, Automake and libtool TINKERCLIFFS20220317-GCCcore-11.3.020220317-GCCcore-12.2.020180311-GCCcore-8.3.020200321-GCCcore-10.2.020180311-GCCcore-9.3.020180311-GCCcore-8.2.020210726-GCCcore-11.2.020210128-GCCcore-10.3.0
ParMETIS ParMETIS is an MPI-based parallel library that implements a variety of algorithms for partitioning unstructured graphs, meshes, and for computing fill-reducing orderings of sparse matrices. ParMETIS extends the functionality provided by METIS and includes routines that are especially suited for parallel AMR computations and large scale numerical simulations. The algorithms implemented in ParMETIS are based on the parallel multilevel k-way graph-partitioning, adaptive repartitioning, and parallel multi-constrained partitioning schemes. TINKERCLIFFS4.0.3-gompi-2019b
scikit-build Scikit-Build, or skbuild, is an improved build system generatorfor CPython C/C++/Fortran/Cython extensions. TINKERCLIFFS0.10.0-foss-2020a-Python-3.8.2
parmetis-4.0.3 SOFTWAREDESCRIPTION TINKERCLIFFSgcc-8.3.0gcc-9.3.0intel-2019b
QuantumESPRESSO Quantum ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling at the nanoscale. It is based on density-functional theory, plane waves, and pseudopotentials (both norm-conserving and ultrasoft). TINKERCLIFFS6.5-intel-2019b
CP2K CP2K is a freely available (GPL) program, written in Fortran 95, to perform atomistic and molecular simulations of solid state, liquid, molecular and biological systems. It provides a general framework for different methods such as e.g. density functional theory (DFT) using a mixed Gaussian and plane waves approach (GPW), and classical pair and many-body potentials. TINKERCLIFFS6.1-foss-2020a
Eigen Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms. TINKERCLIFFS3.3.8-GCCcore-10.2.03.3.7-GCCcore-9.3.03.4.0-GCCcore-11.3.03.4.0-GCCcore-11.2.03.3.73.3.7-GCCcore-8.3.03.3.9-GCCcore-11.2.03.3.9-GCCcore-10.3.0
re2c re2c is a free and open-source lexer generator for C and C++. Its main goal is generatingfast lexers: at least as fast as their reasonably optimized hand-coded counterparts. Instead of usingtraditional table-driven approach, re2c encodes the generated finite state automata directly in the formof conditional jumps and comparisons. TINKERCLIFFS1.2.1-GCCcore-8.3.02.1.1-GCCcore-10.3.01.3-GCCcore-9.3.0
NCO The NCO toolkit manipulates and analyzes data stored in netCDF-accessible formats, including DAP, HDF4, and HDF5. TINKERCLIFFS5.0.3-intel-2021a
TensorFlow An open-source software library for Machine Intelligence TINKERCLIFFS2.4.1-foss-2020b
MATIO matio is an C library for reading and writing Matlab MAT files. TINKERCLIFFS1.5.17-GCCcore-8.3.0
Zip Zip is a compression and file packaging/archive utility.Although highly compatible both with PKWARE’s PKZIP and PKUNZIPutilities for MS-DOS and with Info-ZIP’s own UnZip, our primary objectiveshave been portability and other-than-MSDOS functionality TINKERCLIFFS3.0-GCCcore-10.2.0
lz4 LZ4 is lossless compression algorithm, providing compression speed at 400 MB/s per core. It features an extremely fast decoder, with speed in multiple GB/s per core. TINKERCLIFFS1.9.3-GCCcore-11.3.01.9.3-GCCcore-10.3.01.9.2-GCCcore-9.3.01.9.3-GCCcore-11.2.01.9.2-GCCcore-10.2.0
AUGUSTUS AUGUSTUS is a program that predicts genes in eukaryotic genomic sequences TINKERCLIFFS3.4.0-foss-2020b
double-conversion Efficient binary-decimal and decimal-binary conversion routines for IEEE doubles. TINKERCLIFFS3.1.5-GCCcore-10.2.03.1.4-GCCcore-8.3.03.1.5-GCCcore-10.3.03.1.5-GCCcore-9.3.0
AtomPAW AtomPAW is a Projector-Augmented Wave Dataset Generator that can be used both as a standalone program and a library. TINKERCLIFFS4.1.0.5-intel-2019b
PCRE The PCRE library is a set of functions that implement regular expression pattern matching using the same syntax and semantics as Perl 5. TINKERCLIFFS8.44-GCCcore-10.2.08.44-GCCcore-10.3.08.45-GCCcore-11.2.08.45-GCCcore-11.3.08.43-GCCcore-8.3.08.44-GCCcore-9.3.0
EasyBuild EasyBuild is a software build and installation framework written in Python that allows you to install software in a structured, repeatable and robust way. TINKERCLIFFS4.4.04.4.24.2.24.3.44.7.14.3.24.3.34.6.1
tpl-4.4.18 SOFTWAREDESCRIPTION TINKERCLIFFSGCC-9.3.0intel-2019b
picard A set of tools (in Java) for working with next generation sequencing data in the BAM format. TINKERCLIFFS2.21.6-Java-11

continues on next page

4.2. Table of Software on ARC Systems 39

ARC Documentation, Release 1.0

Table 1 – continued from previous page
SOFTWARE DESCRIPTION CLUSTER
HTSeq HTSeq is a Python library to facilitate processing and analysis of data from high-throughput sequencing (HTS) experiments. TINKERCLIFFS0.11.3-foss-2021b
GLPK The GLPK (GNU Linear Programming Kit) package is intended for solving large-scale linear programming (LP), mixed integer programming (MIP), and other related problems. It is a set of routines written in ANSI C and organized in the form of a callable library. TINKERCLIFFS4.65-GCCcore-8.3.04.65-GCCcore-9.3.05.0-GCCcore-10.3.04.65-GCCcore-10.2.0
SEPP SATe-enabled Phylogenetic Placement - addresses the problem of phylogeneticplacement of short reads into reference alignments and trees. TINKERCLIFFS4.4.0-foss-2020b
glew The OpenGL Extension Wrangler LibraryThe OpenGL Extension Wrangler Library (GLEW) is a cross-platform open-source C/C++ extension loading library. GLEW provides efficient run-time mechanisms for determining which OpenGL extensions are supported on the target platform. OpenGL core and extension functionality is exposed in a single header file. GLEW has been tested on a variety of operating systems, including Windows, Linux, Mac OS X, FreeBSD, Irix, and Solaris. TINKERCLIFFS2.1.0-GCCcore-8.2.0
ISA-L Intelligent Storage Acceleration Library TINKERCLIFFS2.30.0-GCCcore-10.3.02.30.0-GCCcore-11.2.0
pixman Pixman is a low-level software library for pixel manipulation, providing features such as image compositing and trapezoid rasterization. Important users of pixman are the cairo graphics library and the X server. TINKERCLIFFS0.40.0-GCCcore-10.2.00.38.4-GCCcore-8.3.00.38.4-GCCcore-9.3.00.40.0-GCCcore-10.3.0
Hypre Hypre is a library for solving large, sparse linear systems of equations on massively parallel computers. The problems of interest arise in the simulation codes being developed at LLNL and elsewhere to study physical phenomena in the defense, environmental, energy, and biological sciences. TINKERCLIFFS2.18.2-foss-2019b2.18.2-intel-2019b
Ghostscript Ghostscript is a versatile processor for PostScript data with the ability to render PostScript to different targets. It used to be part of the cups printing stack, but is no longer used for that. TINKERCLIFFS9.53.3-GCCcore-10.2.09.52-intel-2019b9.52-GCCcore-9.3.09.54.0-GCCcore-10.3.0
TINKER The TINKER molecular modeling software is a complete and general package for molecular mechanics and dynamics, with some special features for biopolymers. TINKERCLIFFS8.8.1-foss-2020a
Arrow Apache Arrow (incl. PyArrow Python bindings), a cross-language development platform for in-memory data. TINKERCLIFFS6.0.0-foss-2021a6.0.0-foss-2021b
Miniconda3 Miniconda is a free minimal installer for conda. It is a small, bootstrap version of Anaconda that includes only conda, Python, the packages they depend on, and a small number of other useful packages. TINKERCLIFFS4.7.10
Pillow Pillow is the ‘friendly PIL fork’ by Alex Clark and Contributors. PIL is the Python Imaging Library by Fredrik Lundh and Contributors. TINKERCLIFFS6.2.1-GCCcore-8.3.07.0.0-GCCcore-9.3.0-Python-3.8.28.3.2-GCCcore-11.2.08.2.0-GCCcore-10.3.08.0.1-GCCcore-10.2.0
APR Apache Portable Runtime (APR) libraries. TINKERCLIFFS1.7.0-GCCcore-10.2.0
libfabric Libfabric is a core component of OFI. It is the library that defines and exportsthe user-space API of OFI, and is typically the only software that applicationsdeal with directly. It works in conjunction with provider libraries, which areoften integrated directly into libfabric. TINKERCLIFFS1.11.0-GCCcore-10.2.01.12.1-GCCcore-10.3.01.16.1-GCCcore-12.2.01.13.2-GCCcore-11.2.01.15.1-GCCcore-11.3.01.11.0-GCCcore-8.3.0
kaldi Kaldi is a toolkit for speech recognition TINKERCLIFFS20210429-foss-2020b
plotly.py An open-source, interactive graphing library for Python TINKERCLIFFS5.1.0-GCCcore-10.3.0
h5py HDF5 for Python (h5py) is a general-purpose Python interface to the Hierarchical Data Format library, version 5. HDF5 is a versatile, mature scientific software library designed for the fast, flexible storage of enormous amounts of data. TINKERCLIFFS3.7.0-foss-2022a2.10.0-foss-2020a-Python-3.8.2
aria2 aria2 is a lightweight multi-protocol & multi-source command-line download utility. TINKERCLIFFS1.36.0-GCCcore-11.3.0
LMDB LMDB is a fast, memory-efficient database. With memory-mapped files, it has the read performance of a pure in-memory database while retaining the persistence of standard disk-based databases. TINKERCLIFFS0.9.29-GCCcore-11.3.00.9.24-GCCcore-9.3.00.9.24-GCCcore-10.2.0
RECON Patched version of RECON to be used with RepeatModeler. TINKERCLIFFS1.08-GCC-11.3.0
cairo Cairo is a 2D graphics library with support for multiple output devices. Currently supported output targets include the X Window System (via both Xlib and XCB), Quartz, Win32, image buffers, PostScript, PDF, and SVG file output. Experimental backends include OpenGL, BeOS, OS/2, and DirectFB TINKERCLIFFS1.16.0-GCCcore-9.3.01.16.0-GCCcore-8.3.01.16.0-GCCcore-10.3.01.16.0-GCCcore-10.2.0
gaussian Gaussian(09.d01) is a computer program for computational quantum chemistry that includes various methods for electronic structure calculations. TINKERCLIFFS09.d0109.e01
Perl Larry Wall’s Practical Extraction and Report Language TINKERCLIFFS5.30.0-GCCcore-8.3.05.36.0-GCCcore-12.2.05.34.0-GCCcore-11.2.05.32.0-GCCcore-10.2.05.34.1-GCCcore-11.3.05.32.1-GCCcore-10.3.05.28.1-GCCcore-8.2.05.30.2-GCCcore-9.3.0
HDF HDF (also known as HDF4) is a library and multi-object file format for storing and managing data between machines. TINKERCLIFFS4.2.14-GCCcore-8.3.04.2.15-GCCcore-10.3.0
PyTorch Tensors and Dynamic neural networks in Python with strong GPU acceleration.PyTorch is a deep learning framework that puts Python first. TINKERCLIFFS1.6.0-gomkl-2020a-Python-3.8.21.4.0-foss-2020a-Python-3.8.21.7.1-foss-2020b1.6.0-foss-2020a-Python-3.8.2
NGS NGS is a new, domain-specific API for accessing reads, alignments and pileupsproduced from Next Generation Sequencing. TINKERCLIFFS2.10.5-GCCcore-9.3.0
freeglut freeglut is a completely OpenSourced alternative to the OpenGL Utility Toolkit (GLUT) library. TINKERCLIFFS3.0.0-GCCcore-8.2.0
APR-util Apache Portable Runtime (APR) util libraries. TINKERCLIFFS1.6.1-GCCcore-10.2.0
pocl Pocl is a portable open source (MIT-licensed) implementation of the OpenCL standard TINKERCLIFFS1.6-GCC-10.2.0
yaml-cpp yaml-cpp is a YAML parser and emitter in C++ matching the YAML 1.2 spec TINKERCLIFFS0.6.3-GCCcore-8.3.0
Cereal cereal is a header-only C++11 serialization library. cereal takes arbitrary data types and reversibly turns them into different representations, such as compact binary encodings, XML, or JSON. cereal was designed to befast, light-weight, and easy to extend - it has no external dependencies and can be easily bundled with other code or used standalone. TINKERCLIFFS1.3.0
Trimmomatic Trimmomatic performs a variety of useful trimming tasks for illumina paired-end and single ended data.The selection of trimming steps and their associated parameters are supplied on the command line. TINKERCLIFFS0.39-Java-11
makeinfo makeinfo is part of the Texinfo project, the official documentation format of the GNU project. TINKERCLIFFS6.7-GCCcore-10.3.0
GCCcore The GNU Compiler Collection includes front ends for C, C++, Objective-C, Fortran, Java, and Ada, as well as libraries for these languages (libstdc++, libgcj,. . .). TINKERCLIFFS10.3.09.3.012.2.011.2.010.2.08.3.011.3.08.2.0
GCC The GNU Compiler Collection includes front ends for C, C++, Objective-C, Fortran, Java, and Ada, as well as libraries for these languages (libstdc++, libgcj,. . .). TINKERCLIFFS8.2.0-2.31.110.3.09.3.012.2.011.2.010.2.08.3.011.3.0
Tkinter Tkinter module, built with the Python buildsystem TINKERCLIFFS3.9.6-GCCcore-11.2.03.8.2-GCCcore-9.3.03.8.6-GCCcore-10.2.03.7.4-GCCcore-8.3.03.9.5-GCCcore-10.3.0
at-spi2-core Assistive Technology Service Provider Interface. TINKERCLIFFS2.40.2-GCCcore-10.3.02.36.0-GCCcore-9.3.02.38.0-GCCcore-10.2.0
flatbuffers FlatBuffers: Memory Efficient Serialization Library TINKERCLIFFS1.12.0-GCCcore-10.2.0
Judy A C library that implements a dynamic array. TINKERCLIFFS1.0.5-GCCcore-11.3.0
imkl Intel oneAPI Math Kernel Library TINKERCLIFFS2019.5.281-iimpi-2019b2019.5.281-iompi-2019b2019.1.144-gompi-2019a2020.4.304-iimpi-2020b2019.5.281-gompi-2020a2021.2.0-iimpi-2021a2020.4.304-gompi-2020b2021.2.0-iompi-2021a2022.2.12021.2.0-gompi-2021a
bolt_llm The BOLT-LMM algorithm computes statistics for testing association between phenotype and genotypes using a linear mixed model (LMM) TINKERCLIFFS2.4.1-intel2021a
XML-LibXML Perl binding for libxml2 TINKERCLIFFS2.0205-GCCcore-9.3.0
TWL-NINJA Nearly Infinite Neighbor Joining Application. TINKERCLIFFS0.98-cluster_only-GCC-11.3.0
FastQC FastQC is a quality control application for high throughputsequence data. It reads in sequence data in a variety of formats and can eitherprovide an interactive application to review the results of several differentQC checks, or create an HTML based report which can be integrated into apipeline. TINKERCLIFFS0.11.9-Java-11
libarchive Multi-format archive and compression library TINKERCLIFFS3.5.1-GCCcore-11.2.03.6.1-GCCcore-12.2.03.4.3-GCCcore-10.2.03.6.1-GCCcore-11.3.03.5.1-GCCcore-10.3.0
CD-HIT CD-HIT is a very widely used program for clustering and comparing protein or nucleotide sequences. TINKERCLIFFS4.8.1-GCC-11.3.0
prodigal Prodigal (Prokaryotic Dynamic Programming Genefinding Algorithm TINKERCLIFFS2.6.3-GCCcore-10.2.0
PROJ Program proj is a standard Unix filter function which convertsgeographic longitude and latitude coordinates into cartesian coordinates TINKERCLIFFS6.2.1-GCCcore-8.3.07.0.0-GCCcore-9.3.08.0.1-GCCcore-10.3.0
parallel parallel: Build and execute shell commands in parallel TINKERCLIFFS20190922-GCCcore-8.3.020200522-GCCcore-9.3.0

continues on next page

40 Chapter 4. Software

ARC Documentation, Release 1.0

Table 1 – continued from previous page
SOFTWARE DESCRIPTION CLUSTER
GlobusConnectPersonal Globus Connect Personal enables you to share and transfer files to and from your Linux laptop or desktop computer—even if it’s behind a firewall. TINKERCLIFFS3.2.0
DOLFIN DOLFIN is the C++/Python interface of FEniCS, providing a consistent PSE (Problem Solving Environment) for ordinary and partial differential equations. TINKERCLIFFS2019.1.0.post0-foss-2019b-Python-3.7.4
NASM NASM: General-purpose x86 assembler TINKERCLIFFS2.14.02-GCCcore-8.3.02.15.05-GCCcore-10.3.02.15.05-GCCcore-11.3.02.15.05-GCCcore-10.2.02.15.05-GCCcore-11.2.02.14.02-GCCcore-9.3.0
ImageMagick ImageMagick is a software suite to create, edit, compose, or convert bitmap images TINKERCLIFFS7.0.10-35-GCCcore-10.2.07.0.10-1-intel-2019b7.0.10-1-GCCcore-9.3.07.0.11-14-GCCcore-10.3.0
bcl2fastq2 bcl2fastq Conversion Software both demultiplexes data and converts BCL files generated by Illumina sequencing systems to standard FASTQ file formats for downstream analysis. TINKERCLIFFS2.20.0-GCC-9.3.0
MrBayes MrBayes is a program for Bayesian inference and model choice across a wide range of phylogenetic and evolutionary models. TINKERCLIFFS3.2.7-gompi-2020b
ATK ATK provides the set of accessibility interfaces that are implemented by other toolkits and applications. Using the ATK interfaces, accessibility tools have full access to view and control running applications. TINKERCLIFFS2.36.0-GCCcore-10.3.02.36.0-GCCcore-9.3.02.36.0-GCCcore-10.2.0
ParaView ParaView is a scientific parallel visualizer. TINKERCLIFFS5.8.0-foss-2020a-Python-3.8.2-mpi5.9.1-foss-2021a-mpi
ISL isl is a library for manipulating sets and relations of integer points bounded by linear constraints. TINKERCLIFFS0.23-GCCcore-10.3.0
BamTools BamTools provides both a programmer’s API and an end-user’s toolkit for handling BAM files. TINKERCLIFFS2.5.1-GCC-10.2.02.5.1-GCC-9.3.0
sparsehash An extremely memory-efficient hash_map implementation. 2 bits/entry overhead! The SparseHash library contains several hash-map implementations, including implementations that optimize for space or speed. TINKERCLIFFS2.0.3-GCCcore-9.3.0
UDUNITS UDUNITS supports conversion of unit specifications between formatted and binary forms, arithmetic manipulation of units, and conversion of values between compatible scales of measurement. TINKERCLIFFS2.2.26-GCCcore-10.2.02.2.28-GCCcore-10.3.02.2.28-GCCcore-11.2.02.2.26-GCCcore-9.3.02.2.26-GCCcore-8.3.0
hmmer3 HMMER3DESCRIPTION TINKERCLIFFS3.3.2.1b2-hpc
Qt5 Qt is a comprehensive cross-platform C++ application framework. TINKERCLIFFS5.15.2-GCCcore-10.3.05.14.1-GCCcore-9.3.05.13.1-GCCcore-8.3.0
rclone Rclone is a command line program to sync files and directories to and from a variety of online storage services TINKERCLIFFS1.60.01.42-amd641.42-foss-2020a-amd64
Libint Libint library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. TINKERCLIFFS2.6.0-GCC-10.2.0-lmax-6-cp2k1.1.6-foss-2020a
libreadline The GNU Readline library provides a set of functions for use by applications that allow users to edit command lines as they are typed in. Both Emacs and vi editing modes are available. The Readline library includes additional functions to maintain a list of previously-entered command lines, to recall and perhaps reedit those lines, and perform csh-like history expansion on previous commands. TINKERCLIFFS8.0-GCCcore-9.3.08.1-GCCcore-10.3.08.1-GCCcore-11.2.08.1.2-GCCcore-11.3.08.0-GCCcore-10.2.08.0-GCCcore-8.3.08.0-GCCcore-8.2.08.2-GCCcore-12.2.0
pkgconfig pkgconfig is a Python module to interface with the pkg-config command line tool TINKERCLIFFS1.5.5-GCCcore-11.3.0-python1.5.1-GCCcore-10.2.0-python1.5.1-GCCcore-9.3.0-Python-3.8.21.5.1-GCCcore-8.3.0-Python-3.7.4
Clang C, C++, Objective-C compiler, based on LLVM. Does not include C++ standard library – use libstdc++ from GCC. TINKERCLIFFS11.0.1-GCCcore-10.2.0
WPS WRF Preprocessing System (WPS) for WRF. The Weather Research and Forecasting (WRF) Model is a next-generation mesoscale numerical weather prediction system designed to serve both operational forecasting and atmospheric research needs. TINKERCLIFFS4.2-foss-2020b-dmpar
bokeh Statistical and novel interactive HTML plots for Python TINKERCLIFFS2.0.2-foss-2020a-Python-3.8.22.2.3-foss-2020b-Python-3.8.6
libdap A C++ SDK which contains an implementation of DAP 2.0 and DAP4.0. This includes both Client- and Server-side support classes. TINKERCLIFFS3.20.8-GCCcore-11.2.03.20.8-intel-2021a
Mesa Mesa is an open-source implementation of the OpenGL specification - a system for rendering interactive 3D graphics. TINKERCLIFFS19.2.1-GCCcore-8.3.020.2.1-GCCcore-10.2.021.1.1-GCCcore-10.3.021.1.7-GCCcore-11.2.020.0.2-GCCcore-9.3.019.0.1-GCCcore-8.2.019.1.7-GCCcore-8.3.0
MPFR The MPFR library is a C library for multiple-precision floating-point computations with correct rounding. TINKERCLIFFS4.1.0-GCCcore-10.3.04.1.0-GCCcore-10.2.04.0.2-GCCcore-8.3.04.0.2-GCCcore-9.3.0
p4est-2.2 P4ESTDESCRIPTION TINKERCLIFFSgcc-9.3.0intel-2019b
guppyCPU SOFTWAREDESCRIPTION TINKERCLIFFSAnaconda3-2020.07
libxsmm LIBXSMM is a library for small dense and small sparse matrix-matrix multiplicationstargeting Intel Architecture (x86). TINKERCLIFFS1.10-GCC-9.3.0
p4est p4est is a C library to manage a collection (a forest) of multipleconnected adaptive quadtrees or octrees in parallel. TINKERCLIFFS2.2-intel-2019bgcc-8.3.0
VTK The Visualization Toolkit (VTK) is an open-source, freely available software system for 3D computer graphics, image processing and visualization. VTK consists of a C++ class library and several interpreted interface layers including Tcl/Tk, Java, and Python. VTK supports a wide variety of visualization algorithms including: scalar, vector, tensor, texture, and volumetric methods; and advanced modeling techniques such as: implicit modeling, polygon reduction, mesh smoothing, cutting, contouring, and Delaunay triangulation. TINKERCLIFFS8.2.0-foss-2019b-Python-3.7.49.1.0-foss-2021b8.2.0-foss-2020a-Python-3.8.2
GlobalArrays Global Arrays (GA) is a Partitioned Global Address Space (PGAS) programming model TINKERCLIFFS5.7.2-iomkl-2019b5.7.2-intel-2019b
XZ xz: XZ utilities TINKERCLIFFS5.2.5-GCCcore-11.2.05.2.5-GCCcore-10.2.05.2.5-GCCcore-11.3.05.2.5-GCCcore-8.3.05.2.7-GCCcore-12.2.05.2.5-intel-2019b5.2.5-GCCcore-10.3.05.2.4-GCCcore-8.2.05.2.5-GCCcore-9.3.05.2.4-GCCcore-8.3.0
R R is a free software environment for statistical computing and graphics. TINKERCLIFFS4.1.0-foss-2021a4.0.3-foss-2020b4.0.2-foss-2020a
BLAST+ Basic Local Alignment Search Tool, or BLAST, is an algorithm for comparing primary biological sequence information, such as the amino-acid sequences of different proteins or the nucleotides of DNA sequences. TINKERCLIFFS2.13.0-gompi-2022a2.11.0-gompi-2020b2.10.1-gompi-2020a
Nastran NASTRANDESCRIPTION TINKERCLIFFS2021
M4 GNU M4 is an implementation of the traditional Unix macro processor. It is mostly SVR4 compatible although it has some extensions (for example, handling more than 9 positional parameters to macros). GNU M4 also has built-in functions for including files, running shell commands, doing arithmetic, etc. TINKERCLIFFS1.4.18-GCCcore-10.3.01.4.191.4.18-GCCcore-10.2.01.4.19-GCCcore-11.2.01.4.19-GCCcore-12.2.01.4.181.4.18-GCCcore-8.3.01.4.18-GCCcore-9.3.01.4.171.4.18-GCCcore-8.2.01.4.19-GCCcore-11.3.0
Qhull Qhull computes the convex hull, Delaunay triangulation, Voronoi diagram, halfspace intersection about a point, furthest-site Delaunay triangulation, and furthest-site Voronoi diagram. The source code runs in 2-d, 3-d, 4-d, and higher dimensions. Qhull implements the Quickhull algorithm for computing the convex hull. TINKERCLIFFS2020.2-GCCcore-11.2.02020.2-GCCcore-10.3.0
FFTW FFTW is a C subroutine library for computing the discrete Fourier transform (DFT TINKERCLIFFS3.3.8-intel-2019b3.3.10-gompi-2021b3.3.10-GCC-12.2.03.3.8-gompi-2019b3.3.9-iompi-2021a3.3.9-gompi-2021a3.3.10-GCC-11.3.03.3.8-gompi-2020a3.3.9-intel-2021a3.3.8-gompi-2020b
libepoxy Epoxy is a library for handling OpenGL function pointer management for you TINKERCLIFFS1.5.8-GCCcore-10.3.01.5.4-GCCcore-10.2.01.5.4-GCCcore-9.3.0
NLopt NLopt is a free/open-source library for nonlinear optimization, providing a common interface for a number of different free optimization routines available online as well as original implementations of various other algorithms. TINKERCLIFFS2.6.1-GCCcore-9.3.02.6.1-GCCcore-8.3.02.7.0-GCCcore-10.3.02.6.2-GCCcore-10.2.0
FlexiBLAS FlexiBLAS is a wrapper library that enables the exchange of the BLAS and LAPACK implementationused by a program without recompiling or relinking it. TINKERCLIFFS3.2.1-GCC-12.2.03.0.4-GCC-11.2.03.2.0-GCC-11.3.03.0.4-GCC-10.3.0
fastp A tool designed to provide fast all-in-one preprocessing for FastQ files. This tool is developed in C++ with multithreading supported to afford high performance. TINKERCLIFFS0.23.2-GCC-11.2.00.23.2-GCC-10.3.0
DB Berkeley DB enables the development of custom data management solutions, without the overhead traditionally associated with such custom projects. TINKERCLIFFS18.1.40-GCCcore-10.3.018.1.40-GCCcore-11.2.018.1.40-GCCcore-10.2.018.1.40-GCCcore-12.2.018.1.32-GCCcore-8.2.018.1.40-GCCcore-11.3.0
Subversion Subversion is an open source version control system. TINKERCLIFFS1.14.0-GCCcore-10.2.0
dask Dask natively scales Python. Dask provides advanced parallelism for analytics, enabling performance at scale for the tools you love. TINKERCLIFFS2.18.1-foss-2020a-Python-3.8.22021.2.0-foss-2020b-Python-3.8.6
foss GNU Compiler Collection (GCC) based compiler toolchain, including OpenMPI for MPI support, OpenBLAS (BLAS and LAPACK support), FFTW and ScaLAPACK. TINKERCLIFFS2020b2019b2022b2022a2021b2021a2020a
GEOS GEOS (Geometry Engine - Open Source) is a C++ port of the Java Topology Suite (JTS) TINKERCLIFFS3.8.0-iccifort-2019.5.281-Python-3.7.43.9.1-GCC-10.3.03.8.1-GCC-9.3.0-Python-3.8.2
UCX Unified Communication XAn open-source production grade communication framework for data centricand high-performance applications TINKERCLIFFS1.8.0-GCCcore-9.3.01.10.0-GCCcore-10.3.01.9.0-GCCcore-10.2.01.12.1-GCCcore-11.3.01.11.2-GCCcore-11.2.01.8.0-GCCcore-8.3.01.13.1-GCCcore-12.2.0
UCC UCC (Unified Collective Communication) is a collectivecommunication operations API and library that is flexible, complete, and feature-rich for current and emerging programming models and runtimes. TINKERCLIFFS1.0.0-GCCcore-11.3.01.1.0-GCCcore-12.2.0
ncdf4 ncdf4: Interface to Unidata netCDF (version 4 or earlier) format data files TINKERCLIFFS1.17-foss-2020b-R-4.0.3

continues on next page

4.2. Table of Software on ARC Systems 41

ARC Documentation, Release 1.0

Table 1 – continued from previous page
SOFTWARE DESCRIPTION CLUSTER
VTune Intel VTune Amplifier XE is the premier performance profiler for C, C++, C#, Fortran, Assembly and Java. TINKERCLIFFS2022.2.02022.3.0
LLVM The LLVM Core libraries provide a modern source- and target-independent optimizer, along with code generation support for many popular CPUs (as well as some less common ones!) These libraries are built around a well specified code representation known as the LLVM intermediate representation (“LLVM IR”). The LLVM Core libraries are well documented, and it is particularly easy to invent your own language (or port an existing compiler TINKERCLIFFS11.0.0-GCCcore-10.2.09.0.0-GCCcore-8.3.012.0.1-GCCcore-11.2.011.1.0-GCCcore-10.3.09.0.1-GCCcore-9.3.07.0.1-GCCcore-8.2.0
SUNDIALS SUNDIALS: SUite of Nonlinear and DIfferential/ALgebraic Equation Solvers TINKERCLIFFS5.1.0-foss-2019b
boost-1.58.0 BOOSTDESCRIPTION TINKERCLIFFSintel-2019b
glog A C++ implementation of the Google logging module. TINKERCLIFFS0.4.0-GCCcore-9.3.0
VASP The Vienna Ab initio Simulation Package (VASP) is a computer program for atomic scalematerials modelling, e.g. electronic structure calculations and quantum-mechanical molecular dynamics,from first principles. TINKERCLIFFS5.4.4-intel-2019b
GTK3 GTK+ is the primary library used to construct user interfaces in GNOME. It provides all the user interface controls, or widgets, used in a common graphical application. Its object-oriented API allows you to construct user interfaces without dealing with the low-level details of drawing and device interaction. TINKERCLIFFS3.24.29-GCCcore-10.3.0
nettle Nettle is a cryptographic library that is designed to fit easily in more or less any context: In crypto toolkits for object-oriented languages (C++, Python, Pike, . . .), in applications like LSH or GNUPG, or even in kernel space. TINKERCLIFFS3.4.1-GCCcore-8.2.03.7.2-GCCcore-10.3.03.6-GCCcore-10.2.03.5.1-GCCcore-8.3.0
libunwind The primary goal of libunwind is to define a portable and efficient C programming interface (API) to determine the call-chain of a program. The API additionally provides the means to manipulate the preserved (callee-saved) state of each call-frame and to resume execution at any point in the call-chain (non-local goto). The API supports both local (same-process) and remote (across-process) operation. As such, the API is useful in a number of applications TINKERCLIFFS1.5.0-GCCcore-11.2.01.4.0-GCCcore-10.2.01.4.0-GCCcore-10.3.01.3.1-GCCcore-9.3.01.3.1-GCCcore-8.2.01.3.1-GCCcore-8.3.0
GTK+ GTK+ is the primary library used to construct user interfaces in GNOME. It provides all the user interface controls, or widgets, used in a common graphical application. Its object-oriented API allows you to construct user interfaces without dealing with the low-level details of drawing and device interaction. TINKERCLIFFS3.24.17-GCCcore-9.3.03.24.23-GCCcore-10.2.0
SCOTCH Software package and libraries for sequential and parallel graph partitioning,static mapping, and sparse matrix block ordering, and sequential mesh and hypergraph partitioning. TINKERCLIFFS6.0.9-gompi-2020a6.1.0-gompi-2021a6.0.9-iimpi-2019b6.0.9-gompi-2019b
libgit2 libgit2 is a portable, pure C implementation of the Git core methods provided as a re-entrantlinkable library with a solid API, allowing you to write native speed custom Git applications in any languagewhich supports C bindings. TINKERCLIFFS1.1.0-GCCcore-10.3.0
GStreamer GStreamer is a library for constructing graphs of media-handling components. The applications it supports range from simple Ogg/Vorbis playback, audio/video streaming to complex audio (mixing) and video (non-linear editing) processing. TINKERCLIFFS1.18.4-GCC-10.3.0
libevent The libevent API provides a mechanism to execute a callback function when a specific event occurs on a file descriptor or after a timeout has been reached. Furthermore, libevent also support callbacks due to signals or regular timeouts. TINKERCLIFFS2.1.12-GCCcore-10.2.02.1.11-GCCcore-9.3.02.1.12-GCCcore-12.2.02.1.12-GCCcore-11.3.02.1.12-GCCcore-11.2.02.1.11-GCCcore-8.3.02.1.12-GCCcore-10.3.0
libtirpc Libtirpc is a port of Suns Transport-Independent RPC library to Linux. TINKERCLIFFS1.3.2-GCCcore-10.3.01.2.6-GCCcore-8.3.01.3.2-GCCcore-11.2.0
networkx NetworkX is a Python package for the creation, manipulation,and study of the structure, dynamics, and functions of complex networks. TINKERCLIFFS2.4-foss-2020a-Python-3.8.2
x264 x264 is a free software library and application for encoding video streams into the H.264/MPEG-4 AVC compression format, and is released under the terms of the GNU GPL. TINKERCLIFFS20191217-GCCcore-9.3.020190925-GCCcore-8.3.020210414-GCCcore-10.3.020210613-GCCcore-11.2.020201026-GCCcore-10.2.0
x265 x265 is a free software library and application for encoding video streams into the H.265 AVC compression format, and is released under the terms of the GNU GPL. TINKERCLIFFS3.2-GCCcore-8.3.03.5-GCCcore-10.3.03.3-GCCcore-9.3.03.5-GCCcore-11.2.03.3-GCCcore-10.2.0
ZeroMQ ZeroMQ looks like an embeddable networking library but acts like a concurrency framework. It gives you sockets that carry atomic messages across various transports like in-process, inter-process, TCP, and multicast. You can connect sockets N-to-N with patterns like fanout, pub-sub, task distribution, and request-reply. It’s fast enough to be the fabric for clustered products. Its asynchronous I/O model gives you scalable multicore applications, built as asynchronous message-processing tasks. It has a score of language APIs and runs on most operating systems. TINKERCLIFFS4.3.4-GCCcore-11.3.0
Qualimap Qualimap 2 is a platform-independent application written in Java and R that provides both a Graphical User Inteface (GUI) and a command-line interface to facilitate the quality control of alignment sequencing data and its derivatives like feature counts. TINKERCLIFFS2.2.1-foss-2020b-R-4.0.3
OpenBLAS OpenBLAS is an optimized BLAS library based on GotoBLAS2 1.13 BSD version. TINKERCLIFFS0.3.18-GCC-11.2.00.3.12-GCC-10.2.00.3.20-GCC-11.3.00.3.21-GCC-12.2.00.3.15-GCC-10.3.00.3.7-GCC-8.3.00.3.9-GCC-9.3.0
PCRE2 The PCRE library is a set of functions that implement regular expression pattern matching using the same syntax and semantics as Perl 5. TINKERCLIFFS10.34-intel-2019b10.40-GCCcore-11.3.010.36-GCCcore-10.3.010.35-GCCcore-10.2.010.33-GCCcore-8.3.010.34-GCCcore-9.3.0
Kaleido Fast static image export for web-based visualization libraries with zero dependencies TINKERCLIFFS0.2.1-GCCcore-10.3.0
flatbuffers-python Python Flatbuffers runtime library. TINKERCLIFFS1.12-GCCcore-10.2.0
fontconfig Fontconfig is a library designed to provide system-wide font configuration, customization and application access. TINKERCLIFFS2.13.1-GCCcore-8.3.02.13.1-GCCcore-8.2.02.13.92-GCCcore-9.3.02.13.93-GCCcore-10.3.02.13.94-GCCcore-11.2.02.13.92-GCCcore-10.2.02.13.92-intel-2019b
Bazel Bazel is a build tool that builds code quickly and reliably.It is used to build the majority of Google’s software. TINKERCLIFFS3.7.2-GCCcore-10.2.0
libdeflate Heavily optimized library for DEFLATE/zlib/gzip compression and decompression. TINKERCLIFFS1.7-GCCcore-10.3.01.8-GCCcore-11.2.0
Bowtie2 Bowtie 2 is an ultrafast and memory-efficient tool for aligning sequencing reads to long reference sequences. It is particularly good at aligning reads of about 50 up to 100s or 1,000s of characters, and particularly good at aligning to relatively long (e.g. mammalian) genomes. Bowtie 2 indexes the genome with an FM Index to keep its memory footprint small: for the human genome, its memory footprint is typically around 3.2 GB. Bowtie 2 supports gapped, local, and paired-end alignment modes. TINKERCLIFFS2.4.1-GCC-9.3.0
freetype FreeType 2 is a software font engine that is designed to be small, efficient, highly customizable, and portable while capable of producing high-quality output (glyph images). It can be used in graphics libraries, display servers, font conversion tools, text image generation tools, and many other products as well. TINKERCLIFFS2.10.4-GCCcore-10.3.02.11.0-GCCcore-11.2.02.10.1-GCCcore-8.3.02.10.1-GCCcore-9.3.02.10.3-GCCcore-10.2.02.12.1-GCCcore-11.3.02.9.1-GCCcore-8.2.0
aspect-2.2.0 AspectDESCRIPTION TINKERCLIFFSintel-2019b
Valgrind Valgrind: Debugging and profiling tools TINKERCLIFFS3.16.1-gompi-2020a3.16.1-gompi-2020b3.16.1-iimpi-2019b
iimpi Intel C/C++ and Fortran compilers, alongside Intel MPI. TINKERCLIFFS2022b2021a2020b2021b2019b
Yasm Yasm: Complete rewrite of the NASM assembler with BSD license TINKERCLIFFS1.3.0-GCCcore-10.3.01.3.0-GCCcore-9.3.01.3.0-GCCcore-8.3.01.3.0-GCCcore-11.2.01.3.0-GCCcore-10.2.0
archspec A library for detecting, labeling, and reasoning about microarchitectures TINKERCLIFFS0.1.0-GCCcore-9.3.0-Python-3.8.20.1.3-GCCcore-11.2.0
tbb Intel(R) Threading Building Blocks (Intel(R) TBB) lets you easily write parallel C++ programs that take full advantage of multicore performance, that are portable, composable and have future-proof scalability. TINKERCLIFFS2020.1-GCCcore-9.3.02021.5.0-GCCcore-11.3.02020.3-GCCcore-11.2.0
Pysam Pysam is a python module for reading and manipulating Samfiles. It’s a lightweight wrapper of the samtools C-API. Pysam also includes an interface for tabix. TINKERCLIFFS0.16.0.1-GCC-10.3.00.17.0-GCC-11.2.00.16.0.1-GCC-9.3.0
PnetCDF Parallel netCDF: A Parallel I/O Library for NetCDF File Access TINKERCLIFFS1.12.1-gompi-2019b1.12.2-iimpi-2021a1.12.1-gompi-2020a
Trilinos The Trilinos Project is an effort to develop algorithms and enabling technologies within an object-oriented software framework for the solution of large-scale, complex multi-physics engineering and scientific problems. A unique design feature of Trilinos is its focus on packages. TINKERCLIFFS12.12.1-foss-2019b-Python-3.7.4
dijitso dijitso is a Python module for distributed just-in-time shared library building. TINKERCLIFFS2019.1.0-foss-2019b-Python-3.7.4
Brotli Brotli is a generic-purpose lossless compression algorithm that compresses data using a combination of a modern variant of the LZ77 algorithm, Huffman coding and 2nd order context modeling, with a compression ratio comparable to the best currently available general-purpose compression methods. It is similar in speed with deflate but offers more dense compression.The specification of the Brotli Compressed Data Format is defined in RFC 7932. TINKERCLIFFS1.0.9-GCCcore-11.2.01.0.9-GCCcore-11.3.0
Dalton The Dalton suite consists of two separate executables, Dalton and LSDalton. The Dalton code is a powerful tool for a wide range of molecular properties at different levels of theory, whereas LSDalton is a linear-scaling HF and DFT code suitable for large molecular systems, now also with some CCSD capabilites. Any published work arising from use of one of the Dalton programs must acknowledge that by a proper reference. The following list of capabilities of the Dalton programs should give you some indication of whether or not the Dalton suite is able to meet your requirements.. TINKERCLIFFS2020-iomkl-2019b-nompi2020-iomkl-2019b
libvorbis Ogg Vorbis is a fully open, non-proprietary, patent-and-royalty-free, general-purpose compressedaudio format TINKERCLIFFS1.3.7-GCCcore-10.3.01.3.7-GCCcore-10.2.0
starccm+ STARCCM+DESCRIPTION TINKERCLIFFS17.06.00715.04.01012.04.011
pkgconf pkgconf is a program which helps to configure compiler and linker flags for development libraries. It is similar to pkg-config from freedesktop.org. TINKERCLIFFS1.8.0-GCCcore-11.3.01.9.3-GCCcore-12.2.0
SciPy-bundle Bundle of Python packages for scientific software TINKERCLIFFS2020.03-foss-2020a-Python-3.8.22020.03-gomkl-2020a-Python-3.8.22020.11-foss-2020b2019.10-intel-2019b-Python-3.7.42021.10-foss-2021b2022.05-foss-2022a2021.05-foss-2021a2019.10-foss-2019b-Python-3.7.4
tecplot TECPLOTDESCRIPTION TINKERCLIFFS17.1.0
libpciaccess Generic PCI access library. TINKERCLIFFS0.16-GCCcore-11.2.00.16-GCCcore-10.2.00.14-GCCcore-8.2.00.16-GCCcore-11.3.00.14-GCCcore-8.3.00.16-GCCcore-9.3.00.16-GCCcore-8.3.00.17-GCCcore-12.2.00.16-intel-2019b0.16-GCCcore-10.3.0
FDS Fire Dynamics Simulator (FDS) is a large-eddy simulation (LES) code for low-speed flows, with an emphasis on smoke and heat transport from fires. TINKERCLIFFS6.7.6-intel-2020b6.8.0-intel-2022b6.7.4-intel-2019b6.7.1-intel-2019b6.7.5-intel-2019b
amd-uprof AMD Prof for performance analysis TINKERCLIFFS3.4.475

continues on next page

42 Chapter 4. Software

ARC Documentation, Release 1.0

Table 1 – continued from previous page
SOFTWARE DESCRIPTION CLUSTER
JasPer The JasPer Project is an open-source initiative to provide a free software-based reference implementation of the codec specified in the JPEG-2000 Part-1 standard. TINKERCLIFFS2.0.24-GCCcore-10.2.02.0.28-GCCcore-10.3.02.0.14-GCCcore-8.3.02.0.14-GCCcore-9.3.0
jemalloc jemalloc is a general purpose malloc(3) implementation that emphasizes fragmentation avoidance and scalable concurrency support. TINKERCLIFFS5.2.1-GCCcore-11.3.05.2.1-GCCcore-11.2.05.3.0-GCCcore-11.3.0
Boost Boost provides free peer-reviewed portable C++ source libraries. TINKERCLIFFS1.77.0-GCC-11.2.01.76.0-intel-compilers-2021.2.01.74.0-GCC-10.2.01.72.0-gompi-2020a1.76.0-GCC-10.3.01.71.0-gompi-2019b1.79.0-GCC-11.3.01.71.0-iimpi-2019b
MAFFT MAFFT is a multiple sequence alignment program for unix-like operating systems.It offers a range of multiple alignment methods, L-INS-i (accurate; for alignmentof <200 sequences), FFT-NS-2 (fast; for alignment of <30,000 sequences), etc. TINKERCLIFFS7.505-GCC-11.3.0-with-extensions
FIAT The FInite element Automatic Tabulator (FIAT) supportsgeneration of arbitrary order instances of the Lagrange elements onlines, triangles, and tetrahedra. It is also capable of generatingarbitrary order instances of Jacobi-type quadrature rules on the sameelement shapes. TINKERCLIFFS2019.1.0-foss-2019b-Python-3.7.4
Boost.MPI Boost provides free peer-reviewed portable C++ source libraries. TINKERCLIFFS1.79.0-gompi-2022a
gompi GNU Compiler Collection (GCC) based compiler toolchain, including OpenMPI for MPI support. TINKERCLIFFS2021b2020b2019b2022b2022a2020a2021a2019a
ScaFaCoS ScaFaCoS is a library of scalable fast coulomb solvers. TINKERCLIFFS1.0.1-foss-2021b1.0.1-foss-2020a
DBus D-Bus is a message bus system, a simple way for applications to talk to one another. In addition to interprocess communication, D-Bus helps coordinate process lifecycle; it makes it simple and reliable to code a “single instance” application or daemon, and to launch applications and daemons on demand when their services are needed. TINKERCLIFFS1.13.18-GCCcore-10.2.01.13.18-GCCcore-10.3.01.13.12-GCCcore-8.3.01.13.12-GCCcore-9.3.0
LibTIFF tiff: Library and tools for reading and writing TIFF data files TINKERCLIFFS4.1.0-GCCcore-10.2.04.1.0-GCCcore-9.3.04.3.0-GCCcore-11.2.04.2.0-GCCcore-10.3.04.0.10-GCCcore-8.3.04.1.0-GCCcore-8.3.0
netCDF-Fortran NetCDF (network Common Data Form) is a set of software libraries and machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data. TINKERCLIFFS4.5.3-iompi-2021a4.5.3-gompi-2020b4.4.4-intel-2019b4.5.2-iimpi-2019b4.5.3-iimpi-2021a4.5.2-gompi-2019b
molmod MolMod is a Python library with many compoments that are useful to write molecular modeling programs. TINKERCLIFFS1.4.5-foss-2020a-Python-3.8.2
libpng libpng is the official PNG reference library TINKERCLIFFS1.6.36-GCCcore-8.2.01.6.37-GCCcore-9.3.01.6.37-GCCcore-8.3.01.6.37-GCCcore-11.2.01.6.37-GCCcore-10.2.01.6.37-GCCcore-10.3.01.6.37-GCCcore-11.3.0
libgd GD is an open source code library for the dynamic creation of images by programmers. TINKERCLIFFS2.3.1-GCCcore-10.3.02.2.5-GCCcore-8.3.0
TopHat TopHat is a fast splice junction mapper for RNA-Seq reads. TINKERCLIFFS2.1.2-iimpi-2019b
nanomath A few simple math function for other Oxford Nanopore processing scripts TINKERCLIFFS1.2.1-foss-2021a
Jellyfish Jellyfish is a tool for fast, memory-efficient counting of k-mers in DNA. TINKERCLIFFS2.3.0-GCC-9.3.0
OpenPGM OpenPGM is an open source implementation of the Pragmatic General Multicast (PGM) specification in RFC 3208 available at www.ietf.org. PGM is a reliable and scalable multicast protocol that enables receivers to detect loss, request retransmission of lost data, or notify an application of unrecoverable loss. PGM is a receiver-reliable protocol, which means the receiver is responsible for ensuring all data is received, absolving the sender of reception responsibility. TINKERCLIFFS5.2.122-GCCcore-11.3.0
cppy A small C++ header library which makes it easier to writePython extension modules. The primary feature is a PyObject smart pointerwhich automatically handles reference counting and provides conveniencemethods for performing common object operations. TINKERCLIFFS1.1.0-GCCcore-10.3.01.1.0-GCCcore-11.2.0
hypothesis Hypothesis is an advanced testing library for Python. It lets you write tests which are parametrized by a source of examples, and then generates simple and comprehensible examples that make your tests fail. This lets you find more bugs in your code with less work. TINKERCLIFFS6.14.6-GCCcore-11.2.05.41.2-GCCcore-10.2.06.13.1-GCCcore-10.3.06.46.7-GCCcore-11.3.05.6.0-GCCcore-9.3.0-Python-3.8.25.41.5-GCCcore-10.2.04.44.2-GCCcore-8.3.0-Python-3.7.4
Flye Flye is a de novo assembler for long and noisy reads, such as those produced by PacBio and Oxford Nanopore Technologies. TINKERCLIFFS2.9-GCC-10.3.02.9.1-GCC-11.2.02.9-intel-compilers-2021.2.0
PLUMED PLUMED is an open source library for free energy calculations in molecular systems which works together with some of the most popular molecular dynamics engines. Free energy calculations can be performed as a function of many order parameters with a particular focus on biological problems, using state of the art methods such as metadynamics, umbrella sampling and Jarzynski-equation based steered MD. The software, written in C++, can be easily interfaced with both fortran and C/C++ codes. TINKERCLIFFS2.6.0-foss-2020a-Python-3.8.22.5.1-foss-2020a2.7.3-foss-2021b
libiconv Libiconv converts from one character encoding to another through Unicode conversion TINKERCLIFFS1.17-GCCcore-11.3.01.16-GCCcore-10.2.01.16-GCCcore-11.2.01.16-GCCcore-10.3.0
Tcl Tcl (Tool Command Language) is a very powerful but easy to learn dynamic programming language, suitable for a very wide range of uses, including web and desktop applications, networking, administration, testing and many more. TINKERCLIFFS8.6.12-GCCcore-12.2.08.6.12-GCCcore-11.3.08.6.11-GCCcore-11.2.08.6.11-GCCcore-10.3.08.6.10-GCCcore-9.3.08.6.10-intel-2019b8.6.10-GCCcore-10.2.08.6.9-GCCcore-8.2.08.6.9-GCCcore-8.3.0
QIIME2 QIIME is an open-source bioinformatics pipeline for performing microbiome analysis from raw DNA sequencing data. TINKERCLIFFS2020.6
binutils binutils: GNU binary utilities TINKERCLIFFS2.352.342.372.382.302.32-GCCcore-8.3.02.322.37-GCCcore-11.2.02.392.38-GCCcore-11.3.02.31.1-GCCcore-8.2.02.34-GCCcore-9.3.02.35-GCCcore-10.2.02.36.1-GCCcore-10.3.02.36.12.39-GCCcore-12.2.02.31.12.34-intel-2019b
libGLU The OpenGL Utility Library (GLU) is a computer graphics library for OpenGL. TINKERCLIFFS9.0.0-GCCcore-8.2.09.0.1-GCCcore-10.2.09.0.1-GCCcore-10.3.09.0.1-GCCcore-8.3.09.0.2-GCCcore-11.2.09.0.1-GCCcore-9.3.0
HISAT2 HISAT2 is a fast and sensitive alignment program for mapping next-generation sequencing reads (both DNA and RNA) against the general human population (as well as against a single reference genome). TINKERCLIFFS2.2.1-foss-2020a
util-linux Set of Linux utilities TINKERCLIFFS2.37-GCCcore-11.2.02.35-intel-2019b2.35-GCCcore-9.3.02.38-GCCcore-11.3.02.36-GCCcore-10.3.02.36-GCCcore-10.2.02.34-GCCcore-8.3.02.33-GCCcore-8.2.0
lpsolve Mixed Integer Linear Programming (MILP) solver TINKERCLIFFS5.5.2.11-GCC-10.2.0
OpenFOAM OpenFOAM is a free, open source CFD software package. OpenFOAM has an extensive range of features to solve anything from complex fluid flows involving chemical reactions, turbulence and heat transfer, to solid dynamics and electromagnetics. TINKERCLIFFS9-foss-2021av2006-foss-2020a
protobuf-python Python Protocol Buffers runtime library. TINKERCLIFFS3.10.0-foss-2020a-Python-3.8.23.14.0-GCCcore-10.2.03.10.0-gomkl-2020a-Python-3.8.23.10.0-intel-2019b-Python-3.7.4
Salmon Salmon is a wicked-fast program to produce a highly-accurate, transcript-level quantification estimates from RNA-seq data. TINKERCLIFFS1.9.0-GCC-11.3.01.4.0-GCC-11.2.0
BeautifulSoup Beautiful Soup is a Python library designed for quick turnaround projects like screen-scraping. TINKERCLIFFS4.10.0-GCCcore-11.3.0
HTSlib A C library for reading/writing high-throughput sequencing data. This package includes the utilities bgzip and tabix TINKERCLIFFS1.11-GCC-10.2.01.10.2-GCC-9.3.0
Rust Rust is a systems programming language that runs blazingly fast, prevents segfaults, and guarantees thread safety. TINKERCLIFFS1.52.1-GCCcore-10.3.01.54.0-GCCcore-11.2.01.60.0-GCCcore-11.3.0
Wannier90 A tool for obtaining maximally-localised Wannier functions TINKERCLIFFS2.0.1.1-intel-2019b-abinit
Guile Guile is a programming language, designed to help programmers create flexible applications that can be extended by users or other programmers with plug-ins, modules, or scripts. TINKERCLIFFS1.8.8-GCCcore-9.3.0
ncurses The Ncurses (new curses) library is a free software emulation of curses in System V Release 4.0, and more. It uses Terminfo format, supports pads and color and multiple highlights and forms characters and function-key mapping, and has all the other SYSV-curses enhancements over BSD Curses. TINKERCLIFFS6.3-GCCcore-12.2.06.3-GCCcore-11.3.06.1-GCCcore-8.2.06.1-GCCcore-8.3.06.2-GCCcore-9.3.06.2-intel-2019b6.36.26.16.06.2-GCCcore-11.2.06.2-GCCcore-10.2.06.2-GCCcore-10.3.0
MUMPS A parallel sparse direct solver TINKERCLIFFS5.2.1-intel-2019b-metis5.2.1-foss-2020a-metis5.2.1-foss-2019b-metis5.4.0-foss-2021a-metis
xxd xxd is part of the VIM package and this will only install xxd, not vim!xxd converts to/from hexdumps of binary files. TINKERCLIFFS8.2.4220-GCCcore-11.2.0
BEDTools BEDTools: a powerful toolset for genome arithmetic.The BEDTools utilities allow one to address common genomics tasks such as finding feature overlaps andcomputing coverage.The utilities are largely based on four widely-used file formats: BED, GFF/GTF, VCF, and SAM/BAM. TINKERCLIFFS2.29.2-GCC-9.3.0
ScaLAPACK The ScaLAPACK (or Scalable LAPACK) library includes a subset of LAPACK routines redesigned for distributed memory MIMD parallel computers. TINKERCLIFFS2.1.0-gompi-2020a2.1.0-gompi-2020b2.1.0-gompi-2021a-fb2.1.0-gompi-2021b-fb2.2.0-gompi-2022b-fb2.0.2-gompi-2019b2.2.0-gompi-2022a-fb
AccelerateCFD_CE Community Edition of AccelerateCFD platform for creating reduced order models from high fidelity CFD TINKERCLIFFS20210615-foss-2020a
UFL The Unified Form Language (UFL) is a domain specific language for declaration of finite element discretizations of variational forms. More precisely, it defines a flexible interface for choosing finite element spaces and defining expressions for weak forms in a notation close to mathematical notation. TINKERCLIFFS2019.1.0-foss-2019b-Python-3.7.4
libaio Asynchronous input/output library that uses the kernels native interface. TINKERCLIFFS0.3.112-GCCcore-11.3.0
PLY PLY is yet another implementation of lex and yacc for Python. TINKERCLIFFS3.11-GCCcore-8.3.0-Python-3.7.4
ANTLR ANTLR, ANother Tool for Language Recognition, (formerly PCCTS TINKERCLIFFS2.7.7-GCCcore-11.2.0-Java-112.7.7-GCCcore-10.3.0-Java-11
statsmodels Statsmodels is a Python module that allows users to explore data, estimate statistical models,and perform statistical tests. TINKERCLIFFS0.12.2-foss-2021a

continues on next page

4.2. Table of Software on ARC Systems 43

ARC Documentation, Release 1.0

Table 1 – continued from previous page
SOFTWARE DESCRIPTION CLUSTER
ABINIT ABINIT is a package whose main program allows one to find the total energy, charge density and electronic structure of systems made of electrons and nuclei (molecules and periodic solids) within Density Functional Theory (DFT), using pseudopotentials and a planewave or wavelet basis. TINKERCLIFFS8.10.3-intel-2019b
jupyter-server The Jupyter Server provides the backend (i.e. the core services, APIs, and RESTendpoints) for Jupyter web applications like Jupyter notebook, JupyterLab, andVoila. TINKERCLIFFS1.21.0-GCCcore-11.3.0
imkl-FFTW FFTW interfaces using Intel oneAPI Math Kernel Library TINKERCLIFFS2022.2.1-iimpi-2022b
mpi4py MPI for Python (mpi4py) provides bindings of the Message Passing Interface (MPI) standard for the Python programming language, allowing any Python program to exploit multiple processors. TINKERCLIFFS3.1.1-gompi-2020b-timed-pingpong3.0.2-iimpi-2019b-timed-pingpong3.0.2-gompi-2020a-timed-pingpong
flex Flex (Fast Lexical Analyzer) is a tool for generating scanners. A scanner, sometimes called a tokenizer, is a program which recognizes lexical patterns in text. TINKERCLIFFS2.6.4-GCCcore-11.2.02.6.4-GCCcore-10.2.02.6.4-GCCcore-12.2.02.6.4-GCCcore-11.3.02.6.4-GCCcore-10.3.02.6.42.6.4-GCCcore-8.3.02.6.4-GCCcore-8.2.02.6.4-GCCcore-9.3.0
libxml2 Libxml2 is the XML C parser and toolchain developed for the Gnome project (but usable outside of the Gnome platform). TINKERCLIFFS2.9.13-GCCcore-11.3.02.9.10-GCCcore-9.3.02.9.8-GCCcore-8.2.02.9.10-GCCcore-10.2.02.9.10-GCCcore-11.2.02.10.3-GCCcore-12.2.02.9.9-GCCcore-8.3.02.9.10-GCCcore-8.3.02.9.10-intel-2019b2.9.10-GCCcore-10.3.0
expat Expat is an XML parser library written in C. It is a stream-oriented parserin which an application registers handlers for things the parser might findin the XML document (like start tags). TINKERCLIFFS2.2.7-GCCcore-8.3.02.2.9-intel-2019b2.4.1-intel-2021a2.4.9-GCCcore-12.2.02.2.6-GCCcore-8.2.02.2.9-GCCcore-9.3.02.4.1-GCCcore-11.2.02.4.8-GCCcore-11.3.02.2.9-GCCcore-10.3.02.2.9-GCCcore-10.2.0
canu Canu is a fork of the Celera Assembler designed for high-noise single-molecule sequencing TINKERCLIFFS1.9-GCCcore-8.3.0-Java-11
gsutil gsutil is a Python application that lets you access Cloud Storage from the command line. TINKERCLIFFS5.10-GCCcore-11.2.0
ANSYS ANSYS simulation software enables organizations to confidently predict how their products will operate in the real world. We believe that every product is a promise of something greater. TINKERCLIFFS19.520.221.121.222.120.1
texinfo Texinfo is the official documentation format of the GNU project. TINKERCLIFFS6.7-GCCcore-8.3.0
RapidJSON A fast JSON parser/generator for C++ with both SAX/DOM style API TINKERCLIFFS1.1.0-GCCcore-10.3.01.1.0-GCCcore-11.2.0
cytosim Cytosim is a cytoskeleton simulation engine written in C++ working on Mac OS, GNU/Linux and Windows (with Cygwin). TINKERCLIFFS20190117-gomkl-2019a-mkl
JupyterLab JupyterLab is the next-generation user interface for Project Jupyter offering all the familiar building blocks of the classic Jupyter Notebook (notebook, terminal, text editor, file browser, rich outputs, etc.) in a flexible and powerful user interface. JupyterLab will eventually replace the classic Jupyter Notebook. TINKERCLIFFS3.5.0-GCCcore-11.3.0
metis-5.1.0 METIS_DESCRIPTION TINKERCLIFFSgcc-8.3.0gcc-9.3.0intel-2019b
NSPR Netscape Portable Runtime (NSPR) provides a platform-neutral API for system level and libc-like functions. TINKERCLIFFS4.21-GCCcore-8.3.04.25-GCCcore-9.3.04.30-GCCcore-10.3.0
Python Python is a programming language that lets you work more quickly and integrate your systems more effectively. TINKERCLIFFS3.9.6-GCCcore-11.2.0-bare3.9.5-GCCcore-10.3.02.7.18-GCCcore-10.3.0-bare3.7.4-GCCcore-8.3.03.9.5-GCCcore-10.3.0-bare3.8.2-GCCcore-9.3.03.9.6-GCCcore-11.2.03.10.4-GCCcore-11.3.02.7.18-GCCcore-9.3.03.7.2-GCCcore-8.2.02.7.18-GCCcore-10.2.02.7.16-GCCcore-8.3.03.8.6-GCCcore-10.2.02.7.15-GCCcore-8.2.03.10.8-GCCcore-12.2.0-bare3.10.4-GCCcore-11.3.0-bare
make GNU version of make utility TINKERCLIFFS4.2.1-GCCcore-8.3.0
glm-0.9.8.5 SOFTWAREDESCRIPTION TINKERCLIFFSintel-2019b
NSS Network Security Services (NSS) is a set of libraries designed to support cross-platform development of security-enabled client and server applications. TINKERCLIFFS3.65-GCCcore-10.3.03.51-GCCcore-9.3.03.45-GCCcore-8.3.0
BUSCO BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs TINKERCLIFFS5.0.0-foss-2020b
SAMtools SAM Tools provide various utilities for manipulating alignments in the SAM format, including sorting, merging, indexing and generating alignments in a per-position format. TINKERCLIFFS1.11-GCC-10.2.0
yaff Yaff stands for ‘Yet another force field’. It is a pythonic force-field code. TINKERCLIFFS1.6.0-foss-2020a-Python-3.8.2
bzip2 bzip2 is a freely available, patent free, high-quality data compressor. It typically compresses files to within 10% to 15% of the best available techniques (the PPM family of statistical compressors), whilst being around twice as fast at compression and six times faster at decompression. TINKERCLIFFS1.0.8-GCCcore-10.3.01.0.8-GCCcore-8.3.01.0.8-GCCcore-11.3.01.0.8-GCCcore-12.2.01.0.8-GCCcore-10.2.01.0.8-GCCcore-11.2.01.0.8-GCCcore-9.3.01.0.6-GCCcore-8.2.0
trilinos-12.18.1 TRILINOSDESCRIPTION TINKERCLIFFSgcc-8.3.0gcc-9.3.0intel-2019b
HPL HPL is a software package that solves a (random) dense linear system in double precision (64 bits TINKERCLIFFS2.3-foss-2020a2.3-intel-2019b
SoX SoX is the Swiss Army Knife of sound processing utilities. It can convert audio files to other popular audio file types and also apply sound effects and filters during the conversion. TINKERCLIFFS14.4.2-GCC-10.2.0
Autoconf Autoconf is an extensible package of M4 macros that produce shell scripts to automatically configure software source code packages. These scripts can adapt the packages to many kinds of UNIX-like systems without manual user intervention. Autoconf creates a configuration script for a package from a template file that lists the operating system features that the package can use, in the form of M4 macro calls. TINKERCLIFFS2.69-GCCcore-8.2.02.69-GCCcore-8.3.02.71-GCCcore-10.3.02.69-GCCcore-10.2.02.71-GCCcore-11.3.02.71-GCCcore-12.2.02.71-GCCcore-11.2.02.69-GCCcore-9.3.0
iomkl Intel Cluster Toolchain Compiler Edition provides Intel C/C++ and Fortran compilers, Intel MKL & OpenMPI. TINKERCLIFFS2019b
OpenMM OpenMM is a toolkit for molecular simulation. TINKERCLIFFS7.4.1-intel-2019b-Python-3.7.4
LAME LAME is a high quality MPEG Audio Layer III (MP3) encoder licensed under the LGPL. TINKERCLIFFS3.100-GCCcore-10.3.03.100-GCCcore-8.3.03.100-GCCcore-11.2.03.100-GCCcore-10.2.03.100-GCCcore-9.3.0
Julia Julia is a high-level, high-performance dynamic programming language for numerical computing TINKERCLIFFS1.5.1-linux-x86_641.8.5-linux-x86_641.4.2-linux-x86_641.7.2-linux-x86_64
at-spi2-atk AT-SPI 2 toolkit bridge TINKERCLIFFS2.38.0-GCCcore-10.3.02.34.2-GCCcore-9.3.02.38.0-GCCcore-10.2.0
gzip gzip (GNU zip) is a popular data compression program as a replacement for compress TINKERCLIFFS1.10-GCCcore-10.3.01.10-GCCcore-9.3.01.12-GCCcore-11.3.01.10-GCCcore-10.2.01.10-GCCcore-11.2.0
Meson Meson is a cross-platform build system designed to be both as fast and as user friendly as possible. TINKERCLIFFS0.51.2-GCCcore-8.3.0-Python-3.7.40.53.2-GCCcore-9.3.0-Python-3.8.20.53.2-intel-2019b-Python-3.7.40.58.2-GCCcore-11.2.00.55.1-GCCcore-9.3.0-Python-3.8.20.55.3-GCCcore-10.2.00.58.0-GCCcore-10.3.00.50.0-GCCcore-8.2.0-Python-3.7.20.62.1-GCCcore-11.3.0
ffnvcodec FFmpeg nvidia headers. Adds support for nvenc and nvdec. Requires Nvidia GPU and drivers to be present(picked up dynamically). TINKERCLIFFS11.1.5.2
Schrodinger Schrodinger aims to provide integrated software solutions and services that truly meet its customers needs. We want to empower researchers around the world to achieve their goals of improving human health and quality of life through advanced computational techniques that transform the way chemists design compounds and materials. TINKERCLIFFS2020-4
CGAL The goal of the CGAL Open Source Project is to provide easy access to efficient and reliable geometric algorithms in the form of a C++ library. TINKERCLIFFS4.14.3-gompi-2021a4.14.3-gompi-2020a-Python-3.8.24.14.1-foss-2019b-Python-3.7.4
cifs-utils CIFSUTILSDESCRIPTION TINKERCLIFFS7.0
ELPA Eigenvalue SoLvers for Petaflop-Applications . TINKERCLIFFS2019.11.001-intel-2019b
BLIS BLIS is a portable software framework for instantiating high-performanceBLAS-like dense linear algebra libraries. TINKERCLIFFS0.8.1-GCC-11.2.00.9.0-GCC-11.3.00.9.0-GCC-12.2.0
beagle-lib beagle-lib is a high-performance library that can perform the core calculations at the heart of most Bayesian and Maximum Likelihood phylogenetics packages. TINKERCLIFFS3.1.2-GCC-10.2.0
MPICH MPICH is a high-performance and widely portable implementation of the Message Passing Interface (MPI) standard (MPI-1, MPI-2 and MPI-3). TINKERCLIFFS3.3.2-GCC-8.3.0
ls-prepost LS-PrePost TINKERCLIFFS4.8
libglvnd libglvnd is a vendor-neutral dispatch layer for arbitrating OpenGL API calls between multiple vendors. TINKERCLIFFS1.3.3-GCCcore-11.2.01.3.3-GCCcore-10.3.01.3.2-GCCcore-10.2.01.2.0-GCCcore-9.3.01.2.0-GCCcore-8.3.0
GSL The GNU Scientific Library (GSL) is a numerical library for C and C++ programmers. The library provides a wide range of mathematical routines such as random number generators, special functions and least-squares fitting. TINKERCLIFFS2.6-iccifort-2019.5.2812.6-GCC-10.2.02.7-intel-compilers-2021.4.02.6-GCC-9.3.02.7-GCC-10.3.02.7-intel-compilers-2021.2.02.7-GCC-11.2.0
SuiteSparse SuiteSparse is a collection of libraries manipulate sparse matrices. TINKERCLIFFS5.6.0-foss-2019b-METIS-5.1.05.8.1-foss-2020b-METIS-5.1.05.6.0-intel-2019b-METIS-5.1.0
ABAQUS Finite Element Analysis software for modeling, visualization and best-in-class implicit and explicit dynamics FEA. TINKERCLIFFS20182022
JsonCpp JsonCpp is a C++ library that allows manipulating JSON values, including serialization and deserialization to and from strings. It can also preserve existing comment in unserialization/serialization steps, making it a convenient format to store user input files. TINKERCLIFFS1.9.4-GCCcore-10.2.0

continues on next page

44 Chapter 4. Software

ARC Documentation, Release 1.0

Table 1 – continued from previous page
SOFTWARE DESCRIPTION CLUSTER
Boost.Python Boost.Python is a C++ library which enables seamless interoperability between C++ and the Python programming language. TINKERCLIFFS1.71.0-gompi-2019b
SCons SCons is a software construction tool. TINKERCLIFFS4.0.1-GCCcore-10.2.0
libcerf libcerf is a self-contained numeric library that provides an efficient and accurate implementation of complex error functions, along with Dawson, Faddeeva, and Voigt functions. TINKERCLIFFS1.17-GCCcore-10.3.01.13-GCCcore-8.3.0
snappy Snappy is a compression/decompression library. It does not aimfor maximum compression, or compatibility with any other compression library;instead, it aims for very high speeds and reasonable compression. TINKERCLIFFS1.1.7-GCCcore-8.3.01.1.9-GCCcore-11.2.01.1.8-GCCcore-9.3.01.1.9-GCCcore-11.3.01.1.8-GCCcore-10.3.01.1.8-GCCcore-10.2.0
Ninja Ninja is a small build system with a focus on speed. TINKERCLIFFS1.9.0-GCCcore-8.2.01.10.2-GCCcore-10.3.01.9.0-GCCcore-8.3.01.10.1-GCCcore-10.2.01.10.0-GCCcore-9.3.01.10.2-GCCcore-11.2.01.10.0-intel-2019b1.10.2-GCCcore-11.3.0
iccifort Intel C, C++ & Fortran compilers TINKERCLIFFS2019.5.2812020.4.304
UnZip UnZip is an extraction utility for archives compressedin .zip format (also called “zipfiles”). Although highly compatible bothwith PKWARE’s PKZIP and PKUNZIP utilities for MS-DOS and with Info-ZIP’sown Zip program, our primary objectives have been portability andnon-MSDOS functionality. TINKERCLIFFS6.0-GCCcore-12.2.06.0-GCCcore-11.2.06.0-GCCcore-10.2.06.0-GCCcore-10.3.06.0-GCCcore-11.3.0
BBMap BBMap short read aligner, and other bioinformatic tools. TINKERCLIFFS38.98-GCC-11.2.038.96-GCC-10.3.0
libdrm Direct Rendering Manager runtime library. TINKERCLIFFS2.4.97-GCCcore-8.2.02.4.106-GCCcore-10.3.02.4.107-GCCcore-11.2.02.4.100-GCCcore-9.3.02.4.102-GCCcore-10.2.02.4.99-GCCcore-8.3.0
intel-compilers Intel C, C++ & Fortran compilers (classic and oneAPI) TINKERCLIFFS2022.2.12021.2.02021.4.0
dealii-9.3.1 DEALIIDESCRIPTION TINKERCLIFFSgcc-9.3.0
iompi Intel C/C++ and Fortran compilers, alongside Open MPI. TINKERCLIFFS2021a2019b
FEniCS FEniCS is a computing platform for solving partial differential equations (PDEs). TINKERCLIFFS2019.1.0-foss-2019b-Python-3.7.4
intel Compiler toolchain including Intel compilers, Intel MPI and Intel Math Kernel Library (MKL). TINKERCLIFFS2022b2021a2020b2019b
numactl The numactl program allows you to run your application program on specific cpu’s and memory nodes. It does this by supplying a NUMA memory policy to the operating system before running your program. The libnuma library provides convenient ways for you to add NUMA memory policies into your own program. TINKERCLIFFS2.0.14-GCCcore-11.3.02.0.13-GCCcore-10.2.02.0.16-GCCcore-12.2.02.0.13-GCCcore-8.3.02.0.12-GCCcore-8.3.02.0.14-GCCcore-11.2.02.0.13-GCCcore-9.3.02.0.12-GCCcore-8.2.02.0.14-GCCcore-10.3.0
netCDF-C++4 NetCDF (network Common Data Form) is a set of software libraries and machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data. TINKERCLIFFS4.3.1-iimpi-2021a
scikit-learn Scikit-learn integrates machine learning algorithms in the tightly-knit scientific Python world,building upon numpy, scipy, and matplotlib. As a machine-learning module,it provides versatile tools for data mining and analysis in any field of science and engineering.It strives to be simple and efficient, accessible to everybody, and reusable in various contexts. TINKERCLIFFS0.24.2-foss-2021a
RepeatMasker RepeatMasker is a program that screens DNA sequences for interspersed repeats and low complexity DNA sequences. TINKERCLIFFS4.1.4-foss-2022a
help2man help2man produces simple manual pages from the ‘–help’ and ‘–version’ output of other commands. TINKERCLIFFS1.49.2-GCCcore-12.2.01.47.8-GCCcore-8.3.01.49.2-GCCcore-11.3.01.47.12-GCCcore-9.3.01.47.7-GCCcore-8.2.01.47.41.48.3-GCCcore-10.3.01.47.16-GCCcore-10.2.01.48.3-GCCcore-11.2.0
Inspector Intel Inspector is a dynamic memory and threading error checking tool for users developing serial and parallel applications TINKERCLIFFS2021.4.0
pkg-config pkg-config is a helper tool used when compiling applications and libraries. It helps you insert the correct compiler options on the command line so an application can use gcc -o test test.c pkg-config --libs --cflags glib-2.0 for instance, rather than hard-coding values on where to find glib (or other libraries). TINKERCLIFFS0.29.2-GCCcore-8.2.00.29.2-GCCcore-9.3.00.29.2-GCCcore-8.3.00.29.2-GCCcore-11.2.00.29.2-GCCcore-10.2.00.29.2-GCCcore-10.3.0
gflags The gflags package contains a C++ library that implements commandline flagsprocessing. It includes built-in support for standard types such as stringand the ability to define flags in the source file in which they are used. TINKERCLIFFS2.2.2-GCCcore-9.3.0
Java Java Platform, Standard Edition (Java SE) lets you develop and deploy Java applications on desktops and servers. TINKERCLIFFS1.8.0_292-OpenJDK11.0.2
gperftools gperftools is a collection of a high-performance multi-threaded malloc(TINKERCLIFFS2.8-GCCcore-10.2.0
Voro++ Voro++ is a software library for carrying out three-dimensional computations of the Voronoitessellation. A distinguishing feature of the Voro++ library is that it carries out cell-based calculations,computing the Voronoi cell for each particle individually. It is particularly well-suited for applications thatrely on cell-based statistics, where features of Voronoi cells (eg. volume, centroid, number of faces) can be usedto analyze a system of particles. TINKERCLIFFS0.4.6-GCCcore-11.2.00.4.6-GCCcore-9.3.0
GDAL GDAL is a translator library for raster geospatial data formats that is released under an X/MIT style Open Source license by the Open Source Geospatial Foundation. As a library, it presents a single abstract data model to the calling application for all supported formats. It also comes with a variety of useful commandline utilities for data translation and processing. TINKERCLIFFS3.3.0-foss-2021a3.0.2-intel-2019b-Python-3.7.43.0.4-foss-2020a-Python-3.8.2
intltool intltool is a set of tools to centralize translation of many different file formats using GNU gettext-compatible PO files. TINKERCLIFFS0.51.0-GCCcore-10.3.00.51.0-GCCcore-10.2.00.51.0-GCCcore-11.2.00.51.0-GCCcore-8.3.00.51.0-GCCcore-9.3.00.51.0-GCCcore-8.2.0
glibc The GNU C Library project provides the core libraries for the GNU system and GNU/Linux systems, as well as many other systems that use Linux as the kernel. TINKERCLIFFS2.30-GCCcore-8.3.0
slepc4py Python bindings for SLEPc, the Scalable Library for Eigenvalue Problem Computations. TINKERCLIFFS3.12.0-foss-2019b-Python-3.7.4
Ruby Ruby is a dynamic, open source programming language with a focus on simplicity and productivity. It has an elegant syntax that is natural to read and easy to write. TINKERCLIFFS2.7.2-GCCcore-9.3.0
Doxygen Doxygen is a documentation system for C++, C, Java, Objective-C, Python, IDL (Corba and Microsoft flavors), Fortran, VHDL, PHP, C#, and to some extent D. TINKERCLIFFS1.8.16-GCCcore-8.3.01.9.1-GCCcore-10.3.01.8.17-GCCcore-9.3.01.9.1-GCCcore-11.2.01.8.20-GCCcore-10.2.0
TRF Tandem Repeats Finder: a program to analyze DNA sequences. TINKERCLIFFS4.09.1-GCCcore-11.3.0
cURL libcurl is a free and easy-to-use client-side URL transfer library, supporting DICT, FILE, FTP, FTPS, Gopher, HTTP, HTTPS, IMAP, IMAPS, LDAP, LDAPS, POP3, POP3S, RTMP, RTSP, SCP, SFTP, SMTP, SMTPS, Telnet and TFTP. libcurl supports SSL certificates, HTTP POST, HTTP PUT, FTP uploading, HTTP form based upload, proxies, cookies, user+password authentication (Basic, Digest, NTLM, Negotiate, Kerberos), file transfer resume, http proxy tunneling and more. TINKERCLIFFS7.86.0-GCCcore-12.2.07.78.0-GCCcore-11.2.07.76.0-GCCcore-10.3.07.66.0-GCCcore-8.3.07.69.1-GCCcore-9.3.07.83.0-GCCcore-11.3.07.72.0-GCCcore-10.2.07.63.0-GCCcore-8.2.0
MPC Gnu Mpc is a C library for the arithmetic of complex numbers with arbitrarily high precision and correct rounding of the result. It extends the principles of the IEEE-754 standard for fixed precision real floating point numbers to complex numbers, providing well-defined semantics for every operation. At the same time, speed of operation at high precision is a major design goal. TINKERCLIFFS1.1.0-GCC-8.3.01.2.1-GCCcore-10.3.0
LAMMPS LAMMPS is a classical molecular dynamics code, and an acronymfor Large-scale Atomic/Molecular Massively Parallel Simulator. LAMMPS haspotentials for solid-state materials (metals, semiconductors) and soft matter(biomolecules, polymers) and coarse-grained or mesoscopic systems. It can beused to model atoms or, more generically, as a parallel particle simulator atthe atomic, meso, or continuum scale. LAMMPS runs on single processors or inparallel using message-passing techniques and a spatial-decomposition of thesimulation domain. The code is designed to be easy to modify or extend with newfunctionality. TINKERCLIFFS23Jun2022-foss-2021b-kokkos3Mar2020-foss-2020a-Python-3.8.2-kokkos
libjpeg-turbo libjpeg-turbo is a fork of the original IJG libjpeg which uses SIMD to accelerate baseline JPEG compression and decompression. libjpeg is a library that implements JPEG image encoding, decoding and transcoding. TINKERCLIFFS2.0.4-intel-2019b2.1.3-GCCcore-11.3.02.0.6-GCCcore-10.3.02.0.6-GCCcore-11.2.02.0.5-GCCcore-10.2.02.0.3-GCCcore-8.3.02.0.4-GCCcore-9.3.0
libtool GNU libtool is a generic library support script. Libtool hides the complexity of using shared libraries behind a consistent, portable interface. TINKERCLIFFS2.4.6-GCCcore-8.3.02.4.6-GCCcore-8.2.02.4.6-GCCcore-9.3.02.4.6-GCCcore-11.2.02.4.6-GCCcore-10.2.02.4.7-GCCcore-12.2.02.4.7-GCCcore-11.3.02.4.6-GCCcore-10.3.0
SLEPc SLEPc (Scalable Library for Eigenvalue Problem Computations) is a software library for the solution of large scale sparse eigenvalue problems on parallel computers. It is an extension of PETSc and can be used for either standard or generalized eigenproblems, with real or complex arithmetic. It can also be used for computing a partial SVD of a large, sparse, rectangular matrix, and to solve quadratic eigenvalue problems. TINKERCLIFFS3.12.2-intel-2019b3.12.2-foss-2019b-Python-3.7.4
Mako A super-fast templating language that borrows the best ideas from the existing templating languages TINKERCLIFFS1.0.8-GCCcore-8.2.01.1.0-GCCcore-8.3.01.1.3-GCCcore-10.2.01.1.4-GCCcore-11.2.01.1.4-GCCcore-10.3.01.1.2-GCCcore-9.3.0
minimap2 Minimap2 is a fast sequence mapping and alignmentprogram that can find overlaps between long noisy reads, or map longreads or their assemblies to a reference genome optionally with detailedalignment (i.e. CIGAR). At present, it works efficiently with querysequences from a few kilobases to ~100 megabases in length at an errorrate ~15%. Minimap2 outputs in the PAF or the SAM format. On limitedtest data sets, minimap2 is over 20 times faster than most otherlong-read aligners. It will replace BWA-MEM for long reads and contigalignment. TINKERCLIFFS2.17-GCCcore-9.3.0
gmsh Gmsh is a 3D finite element grid generator with a build-in CAD engine and post-processor. TINKERCLIFFS4.5.6-intel-2019b-Python-2.7.16
git Git is a free and open source distributed version control system designedto handle everything from small to very large projects with speed and efficiency. TINKERCLIFFS2.33.1-GCCcore-11.2.0-nodocs2.36.0-GCCcore-11.3.0-nodocs2.28.0-GCCcore-10.2.0-nodocs
gcloud Libraries and tools for interacting with Google Cloud products and services. TINKERCLIFFS382.0.0
xorg-macros X.org macros utilities. TINKERCLIFFS1.19.3-GCCcore-10.3.01.19.3-GCCcore-12.2.01.19.3-GCCcore-11.2.01.19.2-GCCcore-10.2.01.19.2-GCCcore-8.2.01.19.2-GCCcore-9.3.01.19.3-GCCcore-11.3.01.19.2-GCCcore-8.3.0
kim-api Open Knowledgebase of Interatomic Models.KIM is an API and OpenKIM is a collection of interatomic models (potentials) foratomistic simulations. This is a library that can be used by simulation programsto get access to the models in the OpenKIM database.This EasyBuild only installs the API, the models can be installed with thepackage openkim-models, or the user can install them manually by running kim-api-collections-management install user MODELNAMEor kim-api-collections-management install user OpenKIMto install them all. TINKERCLIFFS2.1.3-foss-2020a2.3.0-GCCcore-11.2.0
lstc-licensetools LSTC LICENSE TOOLS for checking license status and managing user-checked out licenses. TINKERCLIFFS77918
groff Groff (GNU troff) is a typesetting system that reads plain text mixed with formatting commands and produces formatted output. TINKERCLIFFS1.22.4-GCCcore-10.3.01.22.4-GCCcore-11.3.01.22.4-GCCcore-11.2.01.22.4-GCCcore-12.2.0
HMMER2 HMMER is used for searching sequence databases for sequence homologs, and for making sequence alignments. TINKERCLIFFS2.3.2-GCC-8.3.0
GROMACS GROMACS is a versatile package to perform molecular dynamics, i.e. simulate theNewtonian equations of motion for systems with hundreds to millions ofparticles.This is a CPU only build, containing both MPI and threadMPI buildsfor both single and double precision.It also contains the gmxapi extension for the single precision MPI build. TINKERCLIFFS2020.1-foss-2020a-Python-3.8.22020.3-foss-2020a-Python-3.8.2

continues on next page

4.2. Table of Software on ARC Systems 45

ARC Documentation, Release 1.0

Table 1 – continued from previous page
SOFTWARE DESCRIPTION CLUSTER
NanoPlot Plotting suite for long read sequencing data and alignments TINKERCLIFFS1.33.0-foss-2021a
LTR_retriever LTR_retriever is a highly accurate and sensitive program for identification of LTR retrotransposons; The LTR Assembly Index (LAI) is also included in this package. TINKERCLIFFS2.9.0-foss-2022a
GMP GMP is a free library for arbitrary precision arithmetic, operating on signed integers, rational numbers, and floating point numbers. TINKERCLIFFS6.2.0-GCCcore-10.2.06.2.0-GCCcore-9.3.06.2.1-GCCcore-11.2.06.2.1-GCCcore-10.3.06.1.2-GCCcore-8.2.06.2.0-intel-2019b6.1.2-GCCcore-8.3.06.2.1-GCCcore-11.3.0
Pango Pango is a library for laying out and rendering of text, with an emphasis on internationalization.Pango can be used anywhere that text layout is needed, though most of the work on Pango so far has been done in thecontext of the GTK+ widget toolkit. Pango forms the core of text and font handling for GTK+-2.x. TINKERCLIFFS1.44.7-GCCcore-9.3.01.44.7-GCCcore-8.3.01.47.0-GCCcore-10.2.01.48.5-GCCcore-10.3.0
GMT GMT is an open source collection of about 80 command-line tools for manipulating geographic and Cartesian data sets (including filtering, trend fitting, gridding, projecting, etc.) and producing PostScript illustrations ranging from simple x-y plots via contour maps to artificially illuminated surfaces and 3D perspective views; the GMT supplements add another 40 more specialized and discipline-specific tools. TINKERCLIFFS5.4.5-foss-2020a
Lua Lua is a powerful, fast, lightweight, embeddable scripting language. Lua combines simple procedural syntax with powerful data description constructs based on associative arrays and extensible semantics. Lua is dynamically typed, runs by interpreting bytecode for a register-based virtual machine, and has automatic memory management with incremental garbage collection, making it ideal for configuration, scripting, and rapid prototyping. TINKERCLIFFS5.1.5-GCCcore-8.3.05.4.3-GCCcore-10.3.0
GDB The GNU Project Debugger TINKERCLIFFS10.2-GCCcore-10.3.0
SU2 SU2 is an open-source collection of software tools written in C++ and Python for the analysis of partial differential equations (PDEs) and PDE-constrained optimization problems on unstructured meshes with state-of-the-art numerical methods. TINKERCLIFFS8.0.0-foss-2022a-mpi
DendroPy A Python library for phylogenetics and phylogenetic computing: reading, writing, simulation, processing and manipulation of phylogenetic trees (phylogenies) and characters. TINKERCLIFFS4.5.2-GCCcore-10.2.0
impi Intel MPI Library, compatible with MPICH ABI TINKERCLIFFS2021.2.0-intel-compilers-2021.2.02021.4.0-intel-compilers-2021.4.02021.7.1-intel-compilers-2022.2.12019.9.304-iccifort-2020.4.3042018.5.288-iccifort-2019.5.281
GLib GLib is one of the base libraries of the GTK+ project TINKERCLIFFS2.66.1-GCCcore-10.2.02.68.2-GCCcore-10.3.02.62.0-GCCcore-8.3.02.64.1-GCCcore-9.3.0
nanopolish Software package for signal-level analysis of Oxford Nanopore sequencing data. TINKERCLIFFS0.13.2-foss-2020a-Python-3.8.2
Seaborn Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing attractive statistical graphics. TINKERCLIFFS0.11.2-foss-2021a
ESMF The Earth System Modeling Framework (ESMF) is a suite of software tools for developing high-performance, multi-component Earth science modeling applications. TINKERCLIFFS8.2.0-intel-2021a
Mathematica Mathematica is a computational software program used in many scientific, engineering, mathematicaland computing fields. TINKERCLIFFS13.2.012.0.0
ea-utils Command-line tools for processing biological sequencing data.Barcode demultiplexing, adapter trimming, etc.Primarily written to support an Illumina based pipeline - but should work with any FASTQs. TINKERCLIFFS1.04.807-intel-2019b
Patran PATRANDESCRIPTION TINKERCLIFFS2021
Tk Tk is an open source, cross-platform widget toolchain that provides a library of basic elements for building a graphical user interface (GUI) in many different programming languages. TINKERCLIFFS8.6.11-GCCcore-10.3.08.6.11-GCCcore-11.2.08.6.10-GCCcore-9.3.08.6.10-intel-2019b8.6.10-GCCcore-10.2.08.6.9-GCCcore-8.3.0
file The file command is ‘a file type guesser’, that is, a command-line tool that tells you in words what kind of data a file contains. TINKERCLIFFS5.38-GCCcore-9.3.0
jbigkit JBIG-KIT is a software implementation of the JBIG1 data compression standard (ITU-T T.82), which was designed for bi-level image data, such as scanned documents. TINKERCLIFFS2.1-GCCcore-11.2.0
SQLite SQLite: SQL Database Engine in a C Library TINKERCLIFFS3.36-GCCcore-11.2.03.38.3-GCCcore-11.3.03.29.0-GCCcore-8.3.03.39.4-GCCcore-12.2.03.27.2-GCCcore-8.2.03.33.0-GCCcore-10.2.03.35.4-GCCcore-10.3.03.31.1-intel-2019b3.31.1-GCCcore-9.3.0
gnuplot Portable interactive, function plotting utility TINKERCLIFFS5.2.8-GCCcore-8.3.05.4.2-GCCcore-10.3.0
gettext GNU ‘gettext’ is an important step for the GNU Translation Project, as it is an asset on which we maybuild many other steps. This package offers to programmers, translators, and even users, a well integrated set of toolsand documentation TINKERCLIFFS0.210.21-GCCcore-10.3.00.21-GCCcore-11.2.00.19.8.10.21-GCCcore-11.3.00.20.1-GCCcore-9.3.00.20.1-GCCcore-8.3.00.21.10.20.10.21-GCCcore-10.2.00.19.8.1-GCCcore-8.2.0
Xvfb Xvfb is an X server that can run on machines with no display hardware and no physical input devices. It emulates a dumb framebuffer using virtual memory. TINKERCLIFFS1.20.9-GCCcore-10.2.01.20.11-GCCcore-10.3.0
pybind11 pybind11 is a lightweight header-only library that exposes C++ types in Python and vice versa, mainly to create Python bindings of existing C++ code. TINKERCLIFFS2.7.1-GCCcore-11.2.02.9.2-GCCcore-11.3.02.6.2-GCCcore-10.3.02.4.3-GCCcore-9.3.0-Python-3.8.22.6.0-GCCcore-10.2.02.4.3-GCCcore-8.3.0-Python-3.7.4
GObject-Introspection GObject introspection is a middleware layer between C libraries (using GObject) and language bindings. The C library can be scanned at compile time and generate a metadata file, in addition to the actual native C library. Then at runtime, language bindings can read this metadata and automatically provide bindings to call into the C library. TINKERCLIFFS1.66.1-GCCcore-10.2.01.63.1-GCCcore-8.3.0-Python-3.7.41.68.0-GCCcore-10.3.01.64.0-GCCcore-9.3.0-Python-3.8.2
aspect-2.3.0 AspectDESCRIPTION TINKERCLIFFSgcc-9.3.0intel-2019b
HarfBuzz HarfBuzz is an OpenType text shaping engine. TINKERCLIFFS2.6.4-GCCcore-8.3.02.6.4-GCCcore-9.3.02.6.7-GCCcore-10.2.02.8.1-GCCcore-10.3.0
Delft3d DELFT3DDESCRIPTION TINKERCLIFFS2023.02-intel-2022b
Serf The serf library is a high performance C-based HTTP client library built upon the Apache Portable Runtime (APR) library TINKERCLIFFS1.3.9-GCCcore-10.2.0
libxc Libxc is a library of exchange-correlation functionals for density-functional theory. The aim is to provide a portable, well tested and reliable set of exchange and correlation functionals. TINKERCLIFFS4.3.4-GCC-9.3.03.0.1-intel-2019b4.2.3-intel-2019b4.3.4-iccifort-2019.5.281
libogg Ogg is a multimedia container format, and the native file and stream format for the Xiph.orgmultimedia codecs. TINKERCLIFFS1.3.4-GCCcore-10.2.01.3.4-GCCcore-10.3.0
libffi The libffi library provides a portable, high level programming interface to various calling conventions. This allows a programmer to call any function specified by a call interface description at run-time. TINKERCLIFFS3.4.2-GCCcore-11.2.03.4.4-GCCcore-12.2.03.3-GCCcore-9.3.03.4.2-GCCcore-11.3.03.3-intel-2019b3.2.1-GCCcore-8.3.03.3-GCCcore-10.2.03.3-GCCcore-10.3.03.2.1-GCCcore-8.2.0
ioapi The Models-3/EDSS Input/Output Applications Programming Interface (I/O API) provides the environmental model developer with an easy-to-learn, easy-to-use programming library for data storage and access, available from both Fortran and C. The same routines can be used for both file storage (using netCDF files) and model coupling (using PVM mailboxes). It is the standard data access library for both the NCSC/CMAS’s EDSS project and EPA’s Models-3, CMAQ, and SMOKE, as well as various other atmospheric and hydrological modeling systems. TINKERCLIFFS3.2-20200828-iimpi-2021a-nocpl
ICU ICU is a mature, widely used set of C/C++ and Java libraries providing Unicode and Globalization support for software applications. TINKERCLIFFS66.1-GCCcore-9.3.064.2-GCCcore-8.3.066.1-intel-2019b67.1-GCCcore-10.2.071.1-GCCcore-11.3.069.1-GCCcore-11.2.069.1-GCCcore-10.3.0
PostgreSQL PostgreSQL is a powerful, open source object-relational database system. It is fully ACID compliant, has full support for foreign keys, joins, views, triggers, and stored procedures (in multiple languages). It includes most SQL:2008 data types, including INTEGER, NUMERIC, BOOLEAN, CHAR, VARCHAR, DATE, INTERVAL, and TIMESTAMP. It also supports storage of binary large objects, including pictures, sounds, or video. It has native programming interfaces for C/C++, Java, .Net, Perl, Python, Ruby, Tcl, ODBC, among others, and exceptional documentation. TINKERCLIFFS14.4-GCCcore-11.3.0
MATLAB MATLAB is a high-level language and interactive environment that enables you to perform computationally intensive tasks faster than with traditional programming languages such as C, C++, and Fortran. TINKERCLIFFS2019b
libmatheval GNU libmatheval is a library (callable from C and Fortran) to parse and evaluate symbolic expressions input as text. TINKERCLIFFS1.1.11-GCCcore-9.3.0
nsync nsync is a C library that exports various synchronization primitives, such as mutexes TINKERCLIFFS1.24.0-GCCcore-10.2.0
PETSc PETSc, pronounced PET-see (the S is silent), is a suite of data structures and routines for the scalable (parallel) solution of scientific applications modeled by partial differential equations. TINKERCLIFFS3.12.4-foss-2019b-Python-3.7.43.12.4-intel-2019b
OpenMPI The Open MPI Project is an open source MPI-3 implementation. TINKERCLIFFS4.1.4-GCC-12.2.04.1.4-GCC-11.3.04.1.1-GCC-10.3.03.1.3-GCC-8.2.0-2.31.14.0.5-GCC-10.2.03.1.4-iccifort-2019.5.2814.0.3-GCC-9.3.04.0.3-iccifort-2019.5.2814.1.1-GCC-11.2.04.1.1-intel-compilers-2021.2.03.1.4-GCC-8.3.0
netCDF NetCDF (network Common Data Form) is a set of software libraries and machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data. TINKERCLIFFS4.6.1-intel-2019b4.7.1-gompi-2019b4.8.1-gompi-2021b4.8.0-iompi-2021a4.7.1-iimpi-2019b4.8.0-gompi-2021a4.8.1-iimpi-2021a4.7.4-gompi-2020a4.7.4-gompi-2020b
time The `time’ command runs another program, then displays information about the resources used by that program, collected by the system while the program was running. TINKERCLIFFS1.9-GCCcore-10.2.01.9-GCCcore-8.3.0

46 Chapter 4. Software

ARC Documentation, Release 1.0

4.3 Lists of Software Installed on ARC Systems

Contents:

4.3.1 List of Software Modules on Infer P100 Nodes

We realize this list is long, but we provide it here for users who want to peruse and/or search for what they need. For a
more cleanly-formatted option, see this table.

---------------------------- /cm/local/modulefiles -----------------------------
apps (L) gcc/9.2.0 openldap
cluster-tools/9.0 ipmitool/1.8.18 python3
cmd lua/5.3.5 python37
cmjob luajit shared (L)
cuda-dcgm/1.7.1.1 module-git slurm/slurm/19.05.5 (L)
dot module-info
freeipmi/1.6.4 null

---------------------------- /usr/share/modulefiles ----------------------------
DefaultModules (L)

---------------------------- /cm/shared/modulefiles ----------------------------
bazel/0.26.1
blacs/openmpi/gcc/64/1.1patch03
blas/gcc/64/3.8.0
bonnie++/1.98
chainer-py37-cuda10.1-gcc/7.1.0
chainer-py37-cuda10.2-gcc/7.7.0
cm-eigen3/3.3.7
cm-pmix3/3.1.4
cub-cuda10.1/1.8.0
cub-cuda10.2/1.8.0
cuda10.1/blas/10.1.243
cuda10.1/fft/10.1.243
cuda10.1/nsight/10.1.243
cuda10.1/profiler/10.1.243
cuda10.1/toolkit/10.1.243
cuda10.2/blas/10.2.89
cuda10.2/fft/10.2.89
cuda10.2/nsight/10.2.89
cuda10.2/profiler/10.2.89
cuda10.2/toolkit/10.2.89
cuda11.1/blas/11.1.0
cuda11.1/fft/11.1.0
cuda11.1/nsight/11.1.0
cuda11.1/profiler/11.1.0
cuda11.1/toolkit/11.1.0
cudnn7.6-cuda10.1/7.6.5.32
cudnn7.6-cuda10.2/7.6.5.32
default-environment
dynet-py37-cuda10.1-gcc/2.1

(continues on next page)

4.3. Lists of Software Installed on ARC Systems 47

ARC Documentation, Release 1.0

(continued from previous page)

dynet-py37-cuda10.2-gcc/2.1
fastai-py37-cuda10.1-gcc/1.0.60
fastai-py37-cuda10.2-gcc/1.0.63
fftw2/openmpi/gcc/64/double/2.1.5
fftw2/openmpi/gcc/64/float/2.1.5
fftw3/openmpi/gcc/64/3.3.8
gcc5/5.5.0
gdb/8.3.1
globalarrays/openmpi/gcc/64/5.7
gpytorch-py37-cuda10.1-gcc/1.0.1
gpytorch-py37-cuda10.2-gcc/1.2.0
hdf5/1.10.1
hdf5_18/1.8.21
horovod-mxnet-py37-cuda10.1-gcc/0.19.0
horovod-mxnet-py37-cuda10.2-gcc/0.20.2
horovod-pytorch-py37-cuda10.1-gcc/0.19.0
horovod-pytorch-py37-cuda10.2-gcc/0.20.2
horovod-tensorflow-py37-cuda10.1-gcc/0.19.0
horovod-tensorflow-py37-cuda10.2-gcc/0.20.2
hpcx/2.4.0
hpl/2.3
hwloc/1.11.11
intel-tbb-oss/ia32/2020.1
intel-tbb-oss/intel64/2020.1
intel/compiler/32/2019/19.0.5
intel/compiler/64/2019/19.0.5 (D)
intel/daal/32/2019/5.281
intel/daal/64/2019/5.281
intel/gdb/64/2019/4.281
intel/ipp/32/2019/5.281
intel/ipp/64/2019/5.281
intel/itac/2019/5.041
intel/mkl/32/2019/5.281
intel/mkl/64/2019/5.281 (D)
intel/mpi/32/2019/5.281
intel/mpi/64/2019/5.281 (D)
intel/tbb/32/2019/5.281
intel/tbb/64/2019/5.281 (D)
iozone/3_487
keras-py37-cuda10.1-gcc/2.3.1
keras-py37-cuda10.2-gcc/2.3.1
lapack/gcc/64/3.8.0
ml-pythondeps-py37-cuda10.1-gcc/3.2.3
ml-pythondeps-py37-cuda10.2-gcc/4.1.2
mpich/ge/gcc/64/3.3.2
mvapich2/gcc/64/2.3.2
mxnet-py37-cuda10.1-gcc/1.5.1
mxnet-py37-cuda10.2-gcc/1.7.0
nccl2-cuda10.1-gcc/2.5.6
nccl2-cuda10.2-gcc/2.7.8
netcdf/gcc/64/gcc/64/4.7.3
netperf/2.7.0

(continues on next page)

48 Chapter 4. Software

ARC Documentation, Release 1.0

(continued from previous page)

openblas/dynamic/0.2.20
opencv3-py37-cuda10.1-gcc/3.4.9
opencv3-py37-cuda10.2-gcc/3.4.11
openmpi-geib-cuda10.1-gcc/3.1.4
openmpi-geib-cuda10.2-gcc/3.1.4
openmpi/gcc/64/1.10.7
protobuf3-gcc/3.8.0
pytorch-py37-cuda10.1-gcc/1.4.0
pytorch-py37-cuda10.2-gcc/1.6.0
scalapack/openmpi/gcc/2.1.0
tensorflow-py37-cuda10.1-gcc/1.15.2
tensorflow-py37-cuda10.2-gcc/1.15.4
tensorflow2-py37-cuda10.1-gcc/2.0.0
tensorflow2-py37-cuda10.2-gcc/2.2.0
tensorrt-cuda10.1-gcc/6.0.1.5
tensorrt-cuda10.2-gcc/7.0.0.11
theano-py37-cuda10.1-gcc/1.0.4
theano-py37-cuda10.2-gcc/1.0.5
ucx/1.6.1
xgboost-py37-cuda10.1-gcc/0.90
xgboost-py37-cuda10.2-gcc/1.2.0

------------------------------ /apps/modulefiles -------------------------------
containers/singularity/3.7.2
infer-broadwell/guppyGPU/4.5.2
infer-broadwell/matlab/R2021a
site/infer-broadwell/easybuild/arc.arcadm
site/infer-broadwell/easybuild/setup (D)
site/infer/easybuild/arc.arcadm
site/infer/easybuild/setup (L,D)
useful_scripts (L)

----------------- /apps/easybuild/modules/infer-broadwell/all ------------------
Anaconda3/2020.11
Autoconf/2.69-GCCcore-8.3.0
Autoconf/2.69-GCCcore-10.2.0 (D)
Automake/1.16.1-GCCcore-8.3.0
Automake/1.16.2-GCCcore-10.2.0 (D)
Autotools/20180311-GCCcore-8.3.0
Autotools/20200321-GCCcore-10.2.0 (D)
Bazel/3.7.2-GCCcore-10.2.0
Bison/3.3.2-GCCcore-8.3.0
Bison/3.3.2
Bison/3.5.3-GCCcore-9.3.0
Bison/3.5.3
Bison/3.7.1-GCCcore-10.2.0
Bison/3.7.1 (D)
Boost.Python/1.71.0-gompic-2019b
Boost/1.71.0-gompic-2019b
Boost/1.74.0-GCC-10.2.0 (D)
CMake/3.15.3-GCCcore-8.3.0
CMake/3.16.4-GCCcore-9.3.0

(continues on next page)

4.3. Lists of Software Installed on ARC Systems 49

ARC Documentation, Release 1.0

(continued from previous page)

CMake/3.18.4-GCCcore-10.2.0 (D)
CUDA/10.1.243-GCC-8.3.0
CUDA/10.2.89-GCC-8.3.0
CUDA/11.1.1-GCC-10.2.0
CUDA/11.1.1-iccifort-2020.4.304 (D)
CUDAcore/11.1.1
Check/0.15.2-GCCcore-10.2.0
DB/18.1.32-GCCcore-8.3.0
DB/18.1.40-GCCcore-10.2.0 (D)
Doxygen/1.8.16-GCCcore-8.3.0
Doxygen/1.8.20-GCCcore-10.2.0 (D)
EasyBuild/4.3.3
EasyBuild/4.3.4
EasyBuild/4.4.0
EasyBuild/4.4.2 (D)
Eigen/3.3.7-GCCcore-9.3.0
Eigen/3.3.7
Eigen/3.3.8-GCCcore-10.2.0 (D)
FFTW/3.3.8-gompi-2020b
FFTW/3.3.8-gompic-2019b
FFTW/3.3.8-gompic-2020b (D)
FFmpeg/4.2.1-GCCcore-8.3.0
FFmpeg/4.3.1-GCCcore-10.2.0 (D)
FriBidi/1.0.5-GCCcore-8.3.0
FriBidi/1.0.10-GCCcore-10.2.0 (D)
GCC/8.3.0
GCC/10.2.0 (D)
GCCcore/8.3.0
GCCcore/9.3.0
GCCcore/10.2.0 (D)
GDRCopy/2.1-GCCcore-10.2.0-CUDA-11.1.1
GMP/6.1.2-GCCcore-8.3.0
GMP/6.2.0-GCCcore-10.2.0 (D)
GROMACS/2020.4-fosscuda-2020b
GSL/2.6-GCC-8.3.0
GSL/2.6-GCC-10.2.0 (D)
Guile/1.8.8-GCCcore-8.3.0
Guile/2.2.7-GCCcore-10.2.0
Guile/3.0.7-GCCcore-10.2.0 (D)
HDF5/1.10.5-gompic-2019b
HDF5/1.10.6-gompic-2020b
HDF5/1.10.7-gompic-2020b (D)
ICU/67.1-GCCcore-10.2.0
Java/11.0.2 (11)
JsonCpp/1.9.4-GCCcore-10.2.0
LAME/3.100-GCCcore-8.3.0
LAME/3.100-GCCcore-10.2.0 (D)
LAMMPS/3Mar2020-fosscuda-2019b-Python-3.7.4-kokkos
LMDB/0.9.24-GCCcore-10.2.0
LibTIFF/4.1.0-GCCcore-10.2.0
M4/1.4.18-GCCcore-8.3.0
M4/1.4.18-GCCcore-9.3.0

(continues on next page)

50 Chapter 4. Software

ARC Documentation, Release 1.0

(continued from previous page)

M4/1.4.18-GCCcore-10.2.0
M4/1.4.18 (D)
MPFR/4.1.0-GCCcore-10.2.0
Meson/0.55.3-GCCcore-10.2.0
NASM/2.14.02-GCCcore-8.3.0
NASM/2.15.05-GCCcore-10.2.0 (D)
NCCL/2.8.3-CUDA-11.1.1
Ninja/1.10.1-GCCcore-10.2.0
OpenBLAS/0.3.7-GCC-8.3.0
OpenBLAS/0.3.12-GCC-10.2.0 (D)
OpenMM/7.5.0-fosscuda-2020b-Python-3.8.6
OpenMPI/3.1.4-gcccuda-2019b
OpenMPI/4.0.5-GCC-10.2.0
OpenMPI/4.0.5-gcccuda-2020b (D)
PCRE/8.43-GCCcore-8.3.0
PCRE/8.44-GCCcore-10.2.0 (D)
PLUMED/2.5.3-fosscuda-2019b-Python-3.7.4
PMIx/3.1.5-GCCcore-10.2.0
Perl/5.30.0-GCCcore-8.3.0
Perl/5.32.0-GCCcore-10.2.0 (D)
Pillow/8.0.1-GCCcore-10.2.0
PyTorch/1.7.1-fosscuda-2020b
PyYAML/5.3.1-GCCcore-10.2.0
Python/2.7.16-GCCcore-8.3.0
Python/2.7.18-GCCcore-10.2.0
Python/3.7.4-GCCcore-8.3.0
Python/3.8.6-GCCcore-10.2.0 (D)
SQLite/3.29.0-GCCcore-8.3.0
SQLite/3.33.0-GCCcore-10.2.0 (D)
SWIG/4.0.2-GCCcore-10.2.0
ScaFaCoS/1.0.1-fosscuda-2020b
ScaLAPACK/2.0.2-gompic-2019b
ScaLAPACK/2.1.0-gompi-2020b
ScaLAPACK/2.1.0-gompic-2020b (D)
SciPy-bundle/2019.10-fosscuda-2019b-Python-2.7.16
SciPy-bundle/2019.10-fosscuda-2019b-Python-3.7.4
SciPy-bundle/2020.11-fosscuda-2020b (D)
Szip/2.1.1-GCCcore-8.3.0
Szip/2.1.1-GCCcore-9.3.0
Szip/2.1.1-GCCcore-10.2.0 (D)
Tcl/8.6.9-GCCcore-8.3.0
Tcl/8.6.10-GCCcore-10.2.0 (D)
TensorFlow/2.4.1-fosscuda-2020b
Tk/8.6.9-GCCcore-8.3.0
Tk/8.6.10-GCCcore-10.2.0 (D)
Tkinter/2.7.16-GCCcore-8.3.0
Tkinter/3.7.4-GCCcore-8.3.0
Tkinter/3.8.6-GCCcore-10.2.0 (D)
UCX/1.9.0-GCCcore-10.2.0-CUDA-11.1.1
UCX/1.9.0-GCCcore-10.2.0 (D)
UnZip/6.0-GCCcore-9.3.0
UnZip/6.0-GCCcore-10.2.0 (D)

(continues on next page)

4.3. Lists of Software Installed on ARC Systems 51

ARC Documentation, Release 1.0

(continued from previous page)

Voro++/0.4.6-fosscuda-2019b
X11/20190717-GCCcore-8.3.0
X11/20201008-GCCcore-10.2.0 (D)
XZ/5.2.4-GCCcore-8.3.0
XZ/5.2.5-GCCcore-10.2.0 (D)
Yasm/1.3.0-GCCcore-8.3.0
Yasm/1.3.0-GCCcore-10.2.0 (D)
Zip/3.0-GCCcore-10.2.0
archspec/0.1.0-GCCcore-8.3.0-Python-3.7.4
binutils/2.32-GCCcore-8.3.0
binutils/2.32
binutils/2.34-GCCcore-9.3.0
binutils/2.34
binutils/2.35-GCCcore-10.2.0
binutils/2.35 (D)
bzip2/1.0.8-GCCcore-8.3.0
bzip2/1.0.8-GCCcore-9.3.0
bzip2/1.0.8-GCCcore-10.2.0 (D)
cURL/7.66.0-GCCcore-8.3.0
cURL/7.69.1-GCCcore-9.3.0
cURL/7.72.0-GCCcore-10.2.0 (D)
cuDNN/8.0.4.30-CUDA-11.1.1
double-conversion/3.1.5-GCCcore-10.2.0
expat/2.2.7-GCCcore-8.3.0
expat/2.2.9-GCCcore-10.2.0 (D)
flatbuffers-python/1.12-GCCcore-10.2.0
flatbuffers/1.12.0-GCCcore-10.2.0
flex/2.6.4-GCCcore-8.3.0
flex/2.6.4-GCCcore-9.3.0
flex/2.6.4-GCCcore-10.2.0
flex/2.6.4 (D)
fontconfig/2.13.1-GCCcore-8.3.0
fontconfig/2.13.92-GCCcore-10.2.0 (D)
foss/2020b
fosscuda/2019b
fosscuda/2020b (D)
freetype/2.10.1-GCCcore-8.3.0
freetype/2.10.3-GCCcore-10.2.0 (D)
gc/7.6.12-GCCcore-8.3.0
gc/7.6.12-GCCcore-10.2.0 (D)
gcccuda/2019b
gcccuda/2020b (D)
gettext/0.19.8.1
gettext/0.20.1-GCCcore-8.3.0
gettext/0.21-GCCcore-10.2.0
gettext/0.21 (D)
giflib/5.2.1-GCCcore-10.2.0
git/2.28.0-GCCcore-10.2.0-nodocs
gompi/2020b
gompic/2019b
gompic/2020b (D)
gperf/3.1-GCCcore-8.3.0

(continues on next page)

52 Chapter 4. Software

ARC Documentation, Release 1.0

(continued from previous page)

gperf/3.1-GCCcore-10.2.0 (D)
groff/1.22.4-GCCcore-8.3.0
gzip/1.10-GCCcore-8.3.0
h5py/2.10.0-fosscuda-2019b-Python-3.7.4
h5py/2.10.0-fosscuda-2020b (D)
help2man/1.47.4
help2man/1.47.8-GCCcore-8.3.0
help2man/1.47.12-GCCcore-9.3.0
help2man/1.47.16-GCCcore-10.2.0 (D)
hwloc/1.11.12-GCCcore-8.3.0
hwloc/2.2.0-GCCcore-10.2.0
hypothesis/5.41.2-GCCcore-10.2.0
hypothesis/5.41.5-GCCcore-10.2.0 (D)
iccifort/2020.4.304
iccifortcuda/2020b
iimpi/2020b
iimpic/2020b
imkl/2020.4.304-iimpi-2020b
imkl/2020.4.304-iimpic-2020b (D)
impi/2019.9.304-iccifort-2020.4.304
impi/2019.9.304-iccifortcuda-2020b (D)
intel/2020b
intelcuda/2020b
intltool/0.51.0-GCCcore-8.3.0
intltool/0.51.0-GCCcore-10.2.0 (D)
kim-api/2.1.3-fosscuda-2019b
kim-api/2.1.3-fosscuda-2020b (D)
libarchive/3.4.3-GCCcore-10.2.0
libevent/2.1.12-GCCcore-10.2.0
libfabric/1.11.0-GCCcore-10.2.0
libffi/3.2.1-GCCcore-8.3.0
libffi/3.3-GCCcore-10.2.0 (D)
libiconv/1.16-GCCcore-8.3.0
libiconv/1.16-GCCcore-10.2.0 (D)
libjpeg-turbo/2.0.3-GCCcore-8.3.0
libjpeg-turbo/2.0.5-GCCcore-10.2.0 (D)
libmatheval/1.1.11-GCCcore-8.3.0
libpciaccess/0.14-GCCcore-8.3.0
libpciaccess/0.16-GCCcore-10.2.0 (D)
libpng/1.6.37-GCCcore-8.3.0
libpng/1.6.37-GCCcore-10.2.0 (D)
libreadline/8.0-GCCcore-8.3.0
libreadline/8.0-GCCcore-9.3.0
libreadline/8.0-GCCcore-10.2.0 (D)
libtool/2.4.6-GCCcore-8.3.0
libtool/2.4.6-GCCcore-10.2.0 (D)
libunistring/0.9.10-GCCcore-8.3.0
libunistring/0.9.10-GCCcore-10.2.0 (D)
libxml2/2.9.9-GCCcore-8.3.0
libxml2/2.9.10-GCCcore-10.2.0 (D)
libyaml/0.2.5-GCCcore-10.2.0
magma/2.5.4-fosscuda-2020b

(continues on next page)

4.3. Lists of Software Installed on ARC Systems 53

ARC Documentation, Release 1.0

(continued from previous page)

makeinfo/6.7-GCCcore-8.3.0
matplotlib/2.2.4-fosscuda-2019b-Python-2.7.16
matplotlib/3.1.1-fosscuda-2019b-Python-3.7.4
matplotlib/3.3.3-fosscuda-2020b (D)
molmod/1.4.5-fosscuda-2019b-Python-3.7.4
molmod/1.4.5-fosscuda-2020b (D)
mpi4py/3.0.2-gompi-2020b-timed-pingpong
mpi4py/3.1.1-gompi-2020b-timed-pingpong (D)
ncurses/6.0
ncurses/6.1-GCCcore-8.3.0
ncurses/6.2-GCCcore-9.3.0
ncurses/6.2-GCCcore-10.2.0
ncurses/6.2 (D)
netCDF-Fortran/4.5.2-gompic-2019b
netCDF/4.7.1-gompic-2019b
networkx/2.5-fosscuda-2020b
nsync/1.24.0-GCCcore-10.2.0
numactl/2.0.12-GCCcore-8.3.0
numactl/2.0.13-GCCcore-10.2.0 (D)
pkg-config/0.29.2-GCCcore-8.3.0
pkg-config/0.29.2-GCCcore-10.2.0 (D)
pkgconfig/1.5.1-GCCcore-8.3.0-Python-3.7.4
pkgconfig/1.5.1-GCCcore-10.2.0-python (D)
protobuf-python/3.14.0-GCCcore-10.2.0
protobuf/3.14.0-GCCcore-10.2.0
pybind11/2.6.0-GCCcore-10.2.0
scikit-build/0.11.1-fosscuda-2020b
snappy/1.1.8-GCCcore-10.2.0
tbb/2019_U9-GCCcore-8.3.0
typing-extensions/3.7.4.3-GCCcore-10.2.0
util-linux/2.34-GCCcore-8.3.0
util-linux/2.36-GCCcore-10.2.0 (D)
x264/20190925-GCCcore-8.3.0
x264/20201026-GCCcore-10.2.0 (D)
x265/3.2-GCCcore-8.3.0
x265/3.3-GCCcore-10.2.0 (D)
xorg-macros/1.19.2-GCCcore-8.3.0
xorg-macros/1.19.2-GCCcore-10.2.0 (D)
yaff/1.6.0-fosscuda-2019b-Python-3.7.4
zlib/1.2.11-GCCcore-8.3.0
zlib/1.2.11-GCCcore-9.3.0
zlib/1.2.11-GCCcore-10.2.0
zlib/1.2.11 (D)

Where:
Aliases: Aliases exist: foo/1.2.3 (1.2) means that "module load foo/1.2" will load␣

→˓foo/1.2.3
D: Default Module
L: Module is loaded

Module defaults are chosen based on Find First Rules due to Name/Version/Version modules␣
→˓found in the module tree.

(continues on next page)

54 Chapter 4. Software

ARC Documentation, Release 1.0

(continued from previous page)

See https://lmod.readthedocs.io/en/latest/060_locating.html for details.

Use "module spider" to find all possible modules and extensions.
Use "module keyword key1 key2 ..." to search for all possible modules matching
any of the "keys".

4.3.2 List of Software Modules on Infer T4 Nodes

We realize this list is long, but we provide it here for users who want to peruse and/or search for what they need. For a
more cleanly-formatted option, see this table.

---------------------------- /cm/local/modulefiles -----------------------------
apps (L) gcc/9.2.0 openldap
cluster-tools/9.0 ipmitool/1.8.18 python3
cmd lua/5.3.5 python37
cmjob luajit shared (L)
cuda-dcgm/1.7.1.1 module-git slurm/slurm/19.05.5 (L)
dot module-info
freeipmi/1.6.4 null

---------------------------- /usr/share/modulefiles ----------------------------
DefaultModules (L)

---------------------------- /cm/shared/modulefiles ----------------------------
bazel/0.26.1
blacs/openmpi/gcc/64/1.1patch03
blas/gcc/64/3.8.0
bonnie++/1.98
chainer-py37-cuda10.1-gcc/7.1.0
chainer-py37-cuda10.2-gcc/7.7.0
cm-eigen3/3.3.7
cm-pmix3/3.1.4
cub-cuda10.1/1.8.0
cub-cuda10.2/1.8.0
cuda10.1/blas/10.1.243
cuda10.1/fft/10.1.243
cuda10.1/nsight/10.1.243
cuda10.1/profiler/10.1.243
cuda10.1/toolkit/10.1.243
cuda10.2/blas/10.2.89
cuda10.2/fft/10.2.89
cuda10.2/nsight/10.2.89
cuda10.2/profiler/10.2.89
cuda10.2/toolkit/10.2.89
cuda11.1/blas/11.1.0
cuda11.1/fft/11.1.0
cuda11.1/nsight/11.1.0
cuda11.1/profiler/11.1.0

(continues on next page)

4.3. Lists of Software Installed on ARC Systems 55

ARC Documentation, Release 1.0

(continued from previous page)

cuda11.1/toolkit/11.1.0
cudnn7.6-cuda10.1/7.6.5.32
cudnn7.6-cuda10.2/7.6.5.32
default-environment
dynet-py37-cuda10.1-gcc/2.1
dynet-py37-cuda10.2-gcc/2.1
fastai-py37-cuda10.1-gcc/1.0.60
fastai-py37-cuda10.2-gcc/1.0.63
fftw2/openmpi/gcc/64/double/2.1.5
fftw2/openmpi/gcc/64/float/2.1.5
fftw3/openmpi/gcc/64/3.3.8
gcc5/5.5.0
gdb/8.3.1
globalarrays/openmpi/gcc/64/5.7
gpytorch-py37-cuda10.1-gcc/1.0.1
gpytorch-py37-cuda10.2-gcc/1.2.0
hdf5/1.10.1
hdf5_18/1.8.21
horovod-mxnet-py37-cuda10.1-gcc/0.19.0
horovod-mxnet-py37-cuda10.2-gcc/0.20.2
horovod-pytorch-py37-cuda10.1-gcc/0.19.0
horovod-pytorch-py37-cuda10.2-gcc/0.20.2
horovod-tensorflow-py37-cuda10.1-gcc/0.19.0
horovod-tensorflow-py37-cuda10.2-gcc/0.20.2
hpcx/2.4.0
hpl/2.3
hwloc/1.11.11
intel-tbb-oss/ia32/2020.1
intel-tbb-oss/intel64/2020.1
intel/compiler/32/2019/19.0.5
intel/compiler/64/2019/19.0.5 (D)
intel/daal/32/2019/5.281
intel/daal/64/2019/5.281
intel/gdb/64/2019/4.281
intel/ipp/32/2019/5.281
intel/ipp/64/2019/5.281
intel/itac/2019/5.041
intel/mkl/32/2019/5.281
intel/mkl/64/2019/5.281 (D)
intel/mpi/32/2019/5.281
intel/mpi/64/2019/5.281 (D)
intel/tbb/32/2019/5.281
intel/tbb/64/2019/5.281 (D)
iozone/3_487
keras-py37-cuda10.1-gcc/2.3.1
keras-py37-cuda10.2-gcc/2.3.1
lapack/gcc/64/3.8.0
ml-pythondeps-py37-cuda10.1-gcc/3.2.3
ml-pythondeps-py37-cuda10.2-gcc/4.1.2
mpich/ge/gcc/64/3.3.2
mvapich2/gcc/64/2.3.2
mxnet-py37-cuda10.1-gcc/1.5.1

(continues on next page)

56 Chapter 4. Software

ARC Documentation, Release 1.0

(continued from previous page)

mxnet-py37-cuda10.2-gcc/1.7.0
nccl2-cuda10.1-gcc/2.5.6
nccl2-cuda10.2-gcc/2.7.8
netcdf/gcc/64/gcc/64/4.7.3
netperf/2.7.0
openblas/dynamic/0.2.20
opencv3-py37-cuda10.1-gcc/3.4.9
opencv3-py37-cuda10.2-gcc/3.4.11
openmpi-geib-cuda10.1-gcc/3.1.4
openmpi-geib-cuda10.2-gcc/3.1.4
openmpi/gcc/64/1.10.7
protobuf3-gcc/3.8.0
pytorch-py37-cuda10.1-gcc/1.4.0
pytorch-py37-cuda10.2-gcc/1.6.0
scalapack/openmpi/gcc/2.1.0
tensorflow-py37-cuda10.1-gcc/1.15.2
tensorflow-py37-cuda10.2-gcc/1.15.4
tensorflow2-py37-cuda10.1-gcc/2.0.0
tensorflow2-py37-cuda10.2-gcc/2.2.0
tensorrt-cuda10.1-gcc/6.0.1.5
tensorrt-cuda10.2-gcc/7.0.0.11
theano-py37-cuda10.1-gcc/1.0.4
theano-py37-cuda10.2-gcc/1.0.5
ucx/1.6.1
xgboost-py37-cuda10.1-gcc/0.90
xgboost-py37-cuda10.2-gcc/1.2.0

------------------------------ /apps/modulefiles -------------------------------
containers/singularity/3.5.3
containers/singularity/3.7.1 (D)
infer-skylake/guppyGPU/4.5.2
infer-skylake/julia/1.6.1-foss-2020b
infer-skylake/julia/1.6.1-fosscuda-2020b (D)
infer-skylake/matlab/R2021a
site/infer-skylake/easybuild/arc.arcadm
site/infer-skylake/easybuild/setup (D)
site/infer/easybuild/arc.arcadm
site/infer/easybuild/setup (L,D)
useful_scripts (L)

------------------ /apps/easybuild/modules/infer-skylake/all -------------------
Anaconda3/2020.11
Autoconf/2.69-GCC-5.4.0-2.26
Autoconf/2.69-GCCcore-7.3.0
Autoconf/2.69-GCCcore-8.2.0
Autoconf/2.69-GCCcore-8.3.0
Autoconf/2.69-GCCcore-9.2.0
Autoconf/2.69-GCCcore-9.3.0
Autoconf/2.69-GCCcore-10.2.0 (D)
Automake/1.15-GCC-5.4.0-2.26
Automake/1.16.1-GCCcore-7.3.0
Automake/1.16.1-GCCcore-8.2.0

(continues on next page)

4.3. Lists of Software Installed on ARC Systems 57

ARC Documentation, Release 1.0

(continued from previous page)

Automake/1.16.1-GCCcore-8.3.0
Automake/1.16.1-GCCcore-9.2.0
Automake/1.16.1-GCCcore-9.3.0
Automake/1.16.2-GCCcore-10.2.0 (D)
Autotools/20150215-GCC-5.4.0-2.26
Autotools/20180311-GCCcore-7.3.0
Autotools/20180311-GCCcore-8.2.0
Autotools/20180311-GCCcore-8.3.0
Autotools/20180311-GCCcore-9.2.0
Autotools/20180311-GCCcore-9.3.0
Autotools/20200321-GCCcore-10.2.0 (D)
Bazel/3.7.2-GCCcore-10.2.0
BirdNET/20201214-fosscuda-2019b-Python-3.7.4
Bison/3.0.4-GCCcore-5.4.0
Bison/3.0.4-GCCcore-6.4.0
Bison/3.0.4-GCCcore-7.3.0
Bison/3.0.4
Bison/3.0.5-GCCcore-6.4.0
Bison/3.0.5-GCCcore-7.3.0
Bison/3.0.5-GCCcore-8.2.0
Bison/3.0.5
Bison/3.3.2-GCCcore-8.3.0
Bison/3.3.2-GCCcore-9.2.0
Bison/3.3.2
Bison/3.5.3-GCCcore-9.3.0
Bison/3.5.3
Bison/3.7.1-GCCcore-10.2.0
Bison/3.7.1 (D)
CMake/3.11.4-GCCcore-7.3.0
CMake/3.12.1-GCCcore-7.3.0
CMake/3.15.3-GCCcore-8.3.0
CMake/3.16.4-GCCcore-9.3.0
CMake/3.18.4-GCCcore-10.2.0 (D)
CUDA/8.0.61_375.26-GCC-5.4.0-2.26
CUDA/9.0.176-GCC-6.4.0-2.28
CUDA/10.0.130-GCC-6.4.0-2.28
CUDA/10.1.243-GCC-8.3.0
CUDA/11.1.1-GCC-10.2.0
CUDA/11.1.1-iccifort-2020.4.304 (D)
CUDAcore/11.1.1
Check/0.15.2-GCCcore-10.2.0
Clang/9.0.1-GCC-8.3.0-CUDA-10.1.243
DB/18.1.32-GCCcore-9.3.0
DB/18.1.40-GCCcore-10.2.0 (D)
DBus/1.13.12-GCCcore-9.3.0
DBus/1.13.18-GCCcore-10.2.0 (D)
Doxygen/1.8.16-GCCcore-8.3.0
Doxygen/1.8.17-GCCcore-9.3.0
Doxygen/1.8.20-GCCcore-10.2.0 (D)
EasyBuild/4.1.2
EasyBuild/4.3.2
EasyBuild/4.3.3

(continues on next page)

58 Chapter 4. Software

ARC Documentation, Release 1.0

(continued from previous page)

EasyBuild/4.3.4
EasyBuild/4.4.0
EasyBuild/4.4.2 (D)
Eigen/3.3.7-GCCcore-9.3.0
Eigen/3.3.8-GCCcore-10.2.0 (D)
FFTW/3.3.4-gompi-2016b
FFTW/3.3.8-gompi-2018b
FFTW/3.3.8-gompi-2019b
FFTW/3.3.8-gompi-2020a
FFTW/3.3.8-gompi-2020b
FFTW/3.3.8-gompic-2019b
FFTW/3.3.8-gompic-2020b (D)
FFmpeg/4.2.1-GCCcore-8.3.0
FFmpeg/4.2.2-GCCcore-9.3.0
FFmpeg/4.3.1-GCCcore-10.2.0 (D)
FriBidi/1.0.5-GCCcore-8.3.0
FriBidi/1.0.9-GCCcore-9.3.0
FriBidi/1.0.10-GCCcore-10.2.0 (D)
GCC/5.4.0-2.26
GCC/6.4.0-2.28
GCC/7.3.0-2.30
GCC/8.2.0-2.31.1
GCC/8.3.0
GCC/9.2.0-2.32
GCC/9.3.0
GCC/10.2.0 (D)
GCCcore/5.4.0
GCCcore/6.4.0
GCCcore/7.3.0
GCCcore/8.2.0
GCCcore/8.3.0
GCCcore/9.2.0
GCCcore/9.3.0
GCCcore/10.2.0 (D)
GDRCopy/2.1-GCCcore-10.2.0-CUDA-11.1.1
GLib/2.60.1-GCCcore-8.2.0
GLib/2.62.0-GCCcore-8.3.0
GLib/2.64.1-GCCcore-9.3.0
GLib/2.66.1-GCCcore-10.2.0 (D)
GMP/6.1.2-GCCcore-7.3.0
GMP/6.1.2-GCCcore-8.2.0
GMP/6.1.2-GCCcore-8.3.0
GMP/6.2.0-GCCcore-9.3.0
GMP/6.2.0-GCCcore-10.2.0 (D)
GROMACS/2020.4-fosscuda-2020b
GSL/2.1-foss-2016b
GSL/2.6-foss-2019b
GSL/2.6-GCC-8.3.0 (D)
Ghostscript/9.50-GCCcore-8.3.0
HDF5/1.10.5-gompi-2019b
HDF5/1.10.5-gompic-2019b
HDF5/1.10.6-gompi-2020a

(continues on next page)

4.3. Lists of Software Installed on ARC Systems 59

ARC Documentation, Release 1.0

(continued from previous page)

HDF5/1.10.7-gompi-2020b
HDF5/1.10.7-gompic-2020b (D)
ICU/64.2-GCCcore-8.3.0
ICU/67.1-GCCcore-10.2.0 (D)
ImageMagick/7.0.9-5-GCCcore-8.3.0
JasPer/2.0.14-GCCcore-8.3.0
JasPer/2.0.14-GCCcore-9.3.0
JasPer/2.0.24-GCCcore-10.2.0 (D)
Java/11.0.2 (11)
JsonCpp/1.9.4-GCCcore-10.2.0
Julia/1.3.1-linux-x86_64
LAME/3.100-GCCcore-8.3.0
LAME/3.100-GCCcore-9.3.0
LAME/3.100-GCCcore-10.2.0 (D)
LLVM/6.0.0-GCCcore-7.3.0
LLVM/8.0.1-GCCcore-8.3.0
LLVM/9.0.0-GCCcore-8.3.0
LLVM/9.0.1-GCCcore-9.3.0
LLVM/11.0.0-GCCcore-10.2.0 (D)
LMDB/0.9.24-GCCcore-10.2.0
LibTIFF/4.0.10-GCCcore-8.3.0
LibTIFF/4.1.0-GCCcore-10.2.0 (D)
LittleCMS/2.9-GCCcore-8.3.0
M4/1.4.17-GCC-5.4.0-2.26
M4/1.4.17-GCCcore-5.4.0
M4/1.4.17
M4/1.4.18-GCCcore-6.4.0
M4/1.4.18-GCCcore-7.3.0
M4/1.4.18-GCCcore-8.2.0
M4/1.4.18-GCCcore-8.3.0
M4/1.4.18-GCCcore-9.2.0
M4/1.4.18-GCCcore-9.3.0
M4/1.4.18-GCCcore-10.2.0
M4/1.4.18 (D)
MPFR/4.1.0-GCCcore-10.2.0
Mako/1.0.7-foss-2018b-Python-2.7.15
Mako/1.1.0-GCCcore-8.3.0
Mako/1.1.2-GCCcore-9.3.0
Mako/1.1.3-GCCcore-10.2.0 (D)
Mesa/18.1.1-foss-2018b
Mesa/19.1.7-GCCcore-8.3.0
Mesa/20.0.2-GCCcore-9.3.0
Mesa/20.2.1-GCCcore-10.2.0 (D)
Meson/0.50.0-GCCcore-8.2.0-Python-3.7.2
Meson/0.51.2-GCCcore-8.3.0-Python-3.7.4
Meson/0.55.1-GCCcore-9.3.0-Python-3.8.2
Meson/0.55.3-GCCcore-10.2.0 (D)
NASM/2.13.03-GCCcore-7.3.0
NASM/2.14.02-GCCcore-8.3.0
NASM/2.14.02-GCCcore-9.3.0
NASM/2.15.05-GCCcore-10.2.0 (D)
NCCL/2.4.8-gcccuda-2019b

(continues on next page)

60 Chapter 4. Software

ARC Documentation, Release 1.0

(continued from previous page)

NCCL/2.8.3-CUDA-11.1.1 (D)
NLopt/2.6.1-GCCcore-8.3.0
NSPR/4.25-GCCcore-9.3.0
NSPR/4.29-GCCcore-10.2.0 (D)
NSS/3.51-GCCcore-9.3.0
NSS/3.57-GCCcore-10.2.0 (D)
Ninja/1.9.0-GCCcore-8.2.0
Ninja/1.9.0-GCCcore-8.3.0
Ninja/1.10.0-GCCcore-9.3.0
Ninja/1.10.1-GCCcore-10.2.0 (D)
OpenBLAS/0.2.18-GCC-5.4.0-2.26-LAPACK-3.6.1
OpenBLAS/0.3.1-GCC-7.3.0-2.30
OpenBLAS/0.3.7-GCC-8.3.0
OpenBLAS/0.3.9-GCC-9.3.0
OpenBLAS/0.3.12-GCC-10.2.0 (D)
OpenMM/7.4.1-fosscuda-2019b-Python-3.7.4
OpenMM/7.5.0-fosscuda-2019b-Python-3.7.4
OpenMM/7.5.0-fosscuda-2020b-Python-3.8.6 (D)
OpenMPI/1.10.3-GCC-5.4.0-2.26
OpenMPI/3.1.1-GCC-7.3.0-2.30
OpenMPI/3.1.4-GCC-8.3.0
OpenMPI/3.1.4-gcccuda-2019b
OpenMPI/4.0.3-GCC-9.2.0-2.32
OpenMPI/4.0.3-GCC-9.3.0
OpenMPI/4.0.5-GCC-10.2.0
OpenMPI/4.0.5-gcccuda-2020b (D)
PCRE/8.43-GCCcore-8.2.0
PCRE/8.43-GCCcore-8.3.0
PCRE/8.44-GCCcore-9.3.0
PCRE/8.44-GCCcore-10.2.0 (D)
PCRE2/10.34-GCCcore-9.3.0
PCRE2/10.35-GCCcore-10.2.0 (D)
PMIx/3.1.5-GCCcore-9.3.0
PMIx/3.1.5-GCCcore-10.2.0 (D)
ParaView/5.8.0-foss-2020a-Python-3.8.2-mpi
ParaView/5.8.1-foss-2020b-mpi (D)
Perl/5.22.1-foss-2016b
Perl/5.26.1-foss-2019b
Perl/5.28.0-GCCcore-7.3.0
Perl/5.28.1-GCCcore-8.2.0
Perl/5.30.0-GCCcore-8.3.0
Perl/5.30.2-GCCcore-9.3.0
Perl/5.32.0-GCCcore-10.2.0 (D)
Pillow/8.0.1-GCCcore-10.2.0
PyTorch/1.7.1-fosscuda-2020b
PyYAML/5.3.1-GCCcore-10.2.0
Python/2.7.15-foss-2018b
Python/2.7.15-GCCcore-7.3.0-bare
Python/2.7.16-GCCcore-8.3.0
Python/2.7.18-GCCcore-9.3.0
Python/2.7.18-GCCcore-10.2.0
Python/3.7.2-GCCcore-8.2.0

(continues on next page)

4.3. Lists of Software Installed on ARC Systems 61

ARC Documentation, Release 1.0

(continued from previous page)

Python/3.7.4-GCCcore-8.3.0
Python/3.8.2-GCCcore-9.3.0
Python/3.8.6-GCCcore-10.2.0 (D)
Qt5/5.14.1-GCCcore-9.3.0
Qt5/5.14.2-GCCcore-10.2.0 (D)
R/3.6.2-foss-2019b
SQLite/3.24.0-GCCcore-7.3.0
SQLite/3.27.2-GCCcore-8.2.0
SQLite/3.29.0-GCCcore-8.3.0
SQLite/3.31.1-GCCcore-9.3.0
SQLite/3.33.0-GCCcore-10.2.0 (D)
SWIG/4.0.1-GCCcore-8.3.0
SWIG/4.0.2-GCCcore-10.2.0 (D)
ScaLAPACK/2.0.2-gompi-2016b-OpenBLAS-0.2.18-LAPACK-3.6.1
ScaLAPACK/2.0.2-gompi-2018b-OpenBLAS-0.3.1
ScaLAPACK/2.0.2-gompi-2019b
ScaLAPACK/2.0.2-gompic-2019b
ScaLAPACK/2.1.0-gompi-2020a
ScaLAPACK/2.1.0-gompi-2020b
ScaLAPACK/2.1.0-gompic-2020b (D)
SciPy-bundle/2019.10-fosscuda-2019b-Python-3.7.4
SciPy-bundle/2020.03-foss-2020a-Python-3.8.2
SciPy-bundle/2020.11-foss-2020b
SciPy-bundle/2020.11-fosscuda-2020b (D)
Szip/2.1.1-GCCcore-8.3.0
Szip/2.1.1-GCCcore-9.3.0
Szip/2.1.1-GCCcore-10.2.0 (D)
Tcl/8.6.8-GCCcore-7.3.0
Tcl/8.6.9-GCCcore-8.2.0
Tcl/8.6.9-GCCcore-8.3.0
Tcl/8.6.10-GCCcore-9.3.0
Tcl/8.6.10-GCCcore-10.2.0 (D)
TensorFlow/2.4.1-fosscuda-2020b
Theano/1.0.4-fosscuda-2019b-Python-3.7.4
Tk/8.6.9-GCCcore-8.3.0
Tk/8.6.10-GCCcore-10.2.0 (D)
Tkinter/3.7.4-GCCcore-8.3.0
Tkinter/3.8.6-GCCcore-10.2.0 (D)
UCX/1.8.0-GCCcore-9.3.0
UCX/1.9.0-GCCcore-10.2.0-CUDA-11.1.1
UCX/1.9.0-GCCcore-10.2.0 (D)
UDUNITS/2.2.26-GCCcore-8.3.0
UnZip/6.0-GCCcore-9.3.0
UnZip/6.0-GCCcore-10.2.0 (D)
VirtualGL/2.6.1-foss-2018b
VirtualGL/2.6.2-GCCcore-9.3.0 (D)
X11/20180604-GCCcore-7.3.0
X11/20190311-GCCcore-8.2.0
X11/20190717-GCCcore-8.3.0
X11/20200222-GCCcore-9.3.0
X11/20201008-GCCcore-10.2.0 (D)
XML-Parser/2.44_01-GCCcore-7.3.0-Perl-5.28.0

(continues on next page)

62 Chapter 4. Software

ARC Documentation, Release 1.0

(continued from previous page)

XZ/5.2.4-GCCcore-7.3.0
XZ/5.2.4-GCCcore-8.2.0
XZ/5.2.4-GCCcore-8.3.0
XZ/5.2.4-GCCcore-9.2.0
XZ/5.2.5-GCCcore-9.3.0
XZ/5.2.5-GCCcore-10.2.0 (D)
Yasm/1.3.0-GCCcore-8.3.0
Yasm/1.3.0-GCCcore-9.3.0
Yasm/1.3.0-GCCcore-10.2.0 (D)
Zip/3.0-GCCcore-10.2.0
binutils/2.26-GCCcore-5.4.0
binutils/2.26
binutils/2.28-GCCcore-6.4.0
binutils/2.28
binutils/2.30-GCCcore-7.3.0
binutils/2.30
binutils/2.31.1-GCCcore-8.2.0
binutils/2.31.1
binutils/2.32-GCCcore-8.3.0
binutils/2.32-GCCcore-9.2.0
binutils/2.32
binutils/2.34-GCCcore-9.3.0
binutils/2.34
binutils/2.35-GCCcore-10.2.0
binutils/2.35 (D)
bzip2/1.0.6-GCCcore-7.3.0
bzip2/1.0.6-GCCcore-8.2.0
bzip2/1.0.8-GCCcore-8.3.0
bzip2/1.0.8-GCCcore-9.3.0
bzip2/1.0.8-GCCcore-10.2.0 (D)
cURL/7.60.0-GCCcore-7.3.0
cURL/7.66.0-GCCcore-8.3.0
cURL/7.69.1-GCCcore-9.3.0
cURL/7.72.0-GCCcore-10.2.0 (D)
cairo/1.16.0-GCCcore-8.2.0
cairo/1.16.0-GCCcore-8.3.0 (D)
cuDNN/7.6.4.38-gcccuda-2019b
cuDNN/8.0.4.30-CUDA-11.1.1 (D)
double-conversion/3.1.5-GCCcore-9.3.0
double-conversion/3.1.5-GCCcore-10.2.0 (D)
ea-utils/1.04.807-foss-2016b
ea-utils/1.04.807-foss-2019b (D)
expat/2.2.5-foss-2019b
expat/2.2.5-GCCcore-7.3.0
expat/2.2.6-GCCcore-8.2.0
expat/2.2.7-GCCcore-8.3.0
expat/2.2.9-foss-2019b
expat/2.2.9-GCCcore-9.3.0
expat/2.2.9-GCCcore-10.2.0 (D)
flatbuffers-python/1.12-GCCcore-10.2.0
flatbuffers/1.12.0-GCCcore-10.2.0
flex/2.6.0-GCCcore-5.4.0

(continues on next page)

4.3. Lists of Software Installed on ARC Systems 63

ARC Documentation, Release 1.0

(continued from previous page)

flex/2.6.0
flex/2.6.3
flex/2.6.4-GCCcore-6.4.0
flex/2.6.4-GCCcore-7.3.0
flex/2.6.4-GCCcore-8.2.0
flex/2.6.4-GCCcore-8.3.0
flex/2.6.4-GCCcore-9.2.0
flex/2.6.4-GCCcore-9.3.0
flex/2.6.4-GCCcore-10.2.0
flex/2.6.4 (D)
fontconfig/2.13.0-GCCcore-7.3.0
fontconfig/2.13.1-GCCcore-8.2.0
fontconfig/2.13.1-GCCcore-8.3.0
fontconfig/2.13.92-GCCcore-9.3.0
fontconfig/2.13.92-GCCcore-10.2.0 (D)
foss/2016b
foss/2018b
foss/2019b
foss/2020a
foss/2020b (D)
fosscuda/2019b
fosscuda/2020b (D)
freetype/2.9.1-GCCcore-7.3.0
freetype/2.9.1-GCCcore-8.2.0
freetype/2.10.1-GCCcore-8.3.0
freetype/2.10.1-GCCcore-9.3.0
freetype/2.10.3-GCCcore-10.2.0 (D)
gcccuda/2019b
gcccuda/2020b (D)
gettext/0.19.8.1-GCCcore-7.3.0
gettext/0.19.8.1-GCCcore-8.2.0
gettext/0.19.8.1
gettext/0.20.1-GCCcore-8.3.0
gettext/0.20.1-GCCcore-9.3.0
gettext/0.20.1
gettext/0.21-GCCcore-10.2.0
gettext/0.21 (D)
giflib/5.2.1-GCCcore-10.2.0
git/2.23.0-GCCcore-8.3.0
git/2.28.0-GCCcore-10.2.0-nodocs (D)
gompi/2016b
gompi/2018b
gompi/2019b
gompi/2020a
gompi/2020b (D)
gompic/2019b
gompic/2020b (D)
gperf/3.1-GCCcore-7.3.0
gperf/3.1-GCCcore-8.2.0
gperf/3.1-GCCcore-8.3.0
gperf/3.1-GCCcore-9.3.0
gperf/3.1-GCCcore-10.2.0 (D)

(continues on next page)

64 Chapter 4. Software

ARC Documentation, Release 1.0

(continued from previous page)

groff/1.22.4-GCCcore-9.3.0
gzip/1.10-GCCcore-9.3.0
gzip/1.10-GCCcore-10.2.0 (D)
help2man/1.47.4-GCCcore-6.4.0
help2man/1.47.4-GCCcore-7.3.0
help2man/1.47.4
help2man/1.47.7-GCCcore-8.2.0
help2man/1.47.8-GCCcore-8.3.0
help2man/1.47.10-GCCcore-9.2.0
help2man/1.47.12-GCCcore-9.3.0
help2man/1.47.16-GCCcore-10.2.0 (D)
hwloc/1.11.3-GCC-5.4.0-2.26
hwloc/1.11.10-GCCcore-7.3.0
hwloc/1.11.12-GCCcore-8.3.0
hwloc/2.1.0-GCCcore-9.2.0
hwloc/2.2.0-GCCcore-9.3.0
hwloc/2.2.0-GCCcore-10.2.0
hypothesis/5.41.2-GCCcore-10.2.0
hypothesis/5.41.5-GCCcore-10.2.0 (D)
iccifort/2019.5.281
iccifort/2020.4.304 (D)
iccifortcuda/2020b
iimpi/2019b
iimpi/2020b (D)
iimpic/2020b
imkl/2019.5.281-iimpi-2019b
imkl/2020.4.304-iimpi-2020b
imkl/2020.4.304-iimpic-2020b (D)
impi/2018.5.288-iccifort-2019.5.281
impi/2019.9.304-iccifort-2020.4.304
impi/2019.9.304-iccifortcuda-2020b (D)
intel/2019b
intel/2020b (D)
intelcuda/2020b
intltool/0.51.0-GCCcore-7.3.0-Perl-5.28.0
intltool/0.51.0-GCCcore-8.2.0
intltool/0.51.0-GCCcore-8.3.0
intltool/0.51.0-GCCcore-9.3.0
intltool/0.51.0-GCCcore-10.2.0 (D)
libGLU/9.0.0-foss-2018b
libGLU/9.0.1-GCCcore-8.3.0
libGLU/9.0.1-GCCcore-9.3.0
libGLU/9.0.1-GCCcore-10.2.0 (D)
libarchive/3.4.3-GCCcore-10.2.0
libdrm/2.4.92-GCCcore-7.3.0
libdrm/2.4.99-GCCcore-8.3.0
libdrm/2.4.100-GCCcore-9.3.0
libdrm/2.4.102-GCCcore-10.2.0 (D)
libevent/2.1.11-GCCcore-9.3.0
libevent/2.1.12-GCCcore-10.2.0 (D)
libfabric/1.11.0-GCCcore-9.3.0
libfabric/1.11.0-GCCcore-10.2.0 (D)

(continues on next page)

4.3. Lists of Software Installed on ARC Systems 65

ARC Documentation, Release 1.0

(continued from previous page)

libffi/3.2.1-GCCcore-7.3.0
libffi/3.2.1-GCCcore-8.2.0
libffi/3.2.1-GCCcore-8.3.0
libffi/3.3-GCCcore-9.3.0
libffi/3.3-GCCcore-10.2.0 (D)
libglvnd/1.2.0-GCCcore-9.3.0
libglvnd/1.3.2-GCCcore-10.2.0 (D)
libgpuarray/0.7.6-fosscuda-2019b-Python-3.7.4
libiconv/1.16-GCCcore-8.3.0
libiconv/1.16-GCCcore-9.3.0
libiconv/1.16-GCCcore-10.2.0 (D)
libjpeg-turbo/2.0.0-GCCcore-7.3.0
libjpeg-turbo/2.0.3-GCCcore-8.3.0
libjpeg-turbo/2.0.4-GCCcore-9.3.0
libjpeg-turbo/2.0.5-GCCcore-10.2.0 (D)
libpciaccess/0.14-GCCcore-7.3.0
libpciaccess/0.14-GCCcore-8.3.0
libpciaccess/0.16-GCCcore-9.2.0
libpciaccess/0.16-GCCcore-9.3.0
libpciaccess/0.16-GCCcore-10.2.0 (D)
libpng/1.6.34-GCCcore-7.3.0
libpng/1.6.36-GCCcore-8.2.0
libpng/1.6.37-GCCcore-8.3.0
libpng/1.6.37-GCCcore-9.3.0
libpng/1.6.37-GCCcore-10.2.0 (D)
libreadline/7.0-GCCcore-7.3.0
libreadline/8.0-GCCcore-8.2.0
libreadline/8.0-GCCcore-8.3.0
libreadline/8.0-GCCcore-9.3.0
libreadline/8.0-GCCcore-10.2.0 (D)
librosa/0.7.2-fosscuda-2019b-Python-3.7.4
libsndfile/1.0.28-GCCcore-8.3.0
libtool/2.4.6-GCC-5.4.0-2.26
libtool/2.4.6-GCCcore-7.3.0
libtool/2.4.6-GCCcore-8.2.0
libtool/2.4.6-GCCcore-8.3.0
libtool/2.4.6-GCCcore-9.2.0
libtool/2.4.6-GCCcore-9.3.0
libtool/2.4.6-GCCcore-10.2.0 (D)
libunwind/1.2.1-GCCcore-7.3.0
libunwind/1.3.1-GCCcore-8.3.0
libunwind/1.3.1-GCCcore-9.3.0
libunwind/1.4.0-GCCcore-10.2.0 (D)
libxml2/2.9.8-GCCcore-7.3.0
libxml2/2.9.8-GCCcore-8.2.0
libxml2/2.9.9-GCCcore-8.3.0
libxml2/2.9.10-GCCcore-9.2.0
libxml2/2.9.10-GCCcore-9.3.0
libxml2/2.9.10-GCCcore-10.2.0 (D)
libyaml/0.2.5-GCCcore-10.2.0
lz4/1.9.2-GCCcore-9.3.0
lz4/1.9.2-GCCcore-10.2.0 (D)

(continues on next page)

66 Chapter 4. Software

ARC Documentation, Release 1.0

(continued from previous page)

magma/2.5.4-fosscuda-2020b
makeinfo/6.7-GCCcore-9.3.0
matplotlib/3.1.1-fosscuda-2019b-Python-3.7.4
matplotlib/3.3.3-fosscuda-2020b (D)
mpi4py/3.0.2-gompi-2020b-timed-pingpong
mpi4py/3.1.1-gompi-2020b-timed-pingpong (D)
ncurses/6.0
ncurses/6.1-GCCcore-7.3.0
ncurses/6.1-GCCcore-8.2.0
ncurses/6.1-GCCcore-8.3.0
ncurses/6.1
ncurses/6.2-GCCcore-9.3.0
ncurses/6.2-GCCcore-10.2.0
ncurses/6.2 (D)
netCDF/4.7.4-gompi-2020a
netCDF/4.7.4-gompi-2020b (D)
nettle/3.4-foss-2018b
nettle/3.5.1-GCCcore-8.3.0 (D)
nsync/1.24.0-GCCcore-10.2.0
numactl/2.0.11-GCC-5.4.0-2.26
numactl/2.0.11-GCCcore-7.3.0
numactl/2.0.12-GCCcore-8.3.0
numactl/2.0.13-GCCcore-9.2.0
numactl/2.0.13-GCCcore-9.3.0
numactl/2.0.13-GCCcore-10.2.0 (D)
numba/0.47.0-fosscuda-2019b-Python-3.7.4
pixman/0.38.0-GCCcore-8.2.0
pixman/0.38.4-GCCcore-8.3.0 (D)
pkg-config/0.29.2-GCCcore-7.3.0
pkg-config/0.29.2-GCCcore-8.2.0
pkg-config/0.29.2-GCCcore-8.3.0
pkg-config/0.29.2-GCCcore-9.3.0
pkg-config/0.29.2-GCCcore-10.2.0 (D)
pkgconfig/1.5.1-GCCcore-10.2.0-python
pocl/1.4-gcccuda-2019b
protobuf-python/3.14.0-GCCcore-10.2.0
protobuf/3.14.0-GCCcore-10.2.0
pybind11/2.4.3-GCCcore-9.3.0-Python-3.8.2
pybind11/2.6.0-GCCcore-10.2.0 (D)
re2c/1.3-GCCcore-9.3.0
re2c/2.0.3-GCCcore-10.2.0 (D)
scikit-learn/0.21.3-fosscuda-2019b-Python-3.7.4
snappy/1.1.8-GCCcore-9.3.0
snappy/1.1.8-GCCcore-10.2.0 (D)
typing-extensions/3.7.4.3-GCCcore-10.2.0
util-linux/2.32-GCCcore-7.3.0
util-linux/2.33-GCCcore-8.2.0
util-linux/2.34-GCCcore-8.3.0
util-linux/2.35-GCCcore-9.3.0
util-linux/2.36-GCCcore-10.2.0 (D)
x264/20190925-GCCcore-8.3.0
x264/20191217-GCCcore-9.3.0

(continues on next page)

4.3. Lists of Software Installed on ARC Systems 67

ARC Documentation, Release 1.0

(continued from previous page)

x264/20201026-GCCcore-10.2.0 (D)
x265/3.2-GCCcore-8.3.0
x265/3.3-GCCcore-9.3.0
x265/3.3-GCCcore-10.2.0 (D)
xorg-macros/1.19.2-GCCcore-7.3.0
xorg-macros/1.19.2-GCCcore-8.2.0
xorg-macros/1.19.2-GCCcore-8.3.0
xorg-macros/1.19.2-GCCcore-9.2.0
xorg-macros/1.19.2-GCCcore-9.3.0
xorg-macros/1.19.2-GCCcore-10.2.0 (D)
zlib/1.2.8-GCCcore-5.4.0
zlib/1.2.8
zlib/1.2.11-GCCcore-6.4.0
zlib/1.2.11-GCCcore-7.3.0
zlib/1.2.11-GCCcore-8.2.0
zlib/1.2.11-GCCcore-8.3.0
zlib/1.2.11-GCCcore-9.2.0
zlib/1.2.11-GCCcore-9.3.0
zlib/1.2.11-GCCcore-10.2.0
zlib/1.2.11 (D)
zstd/1.4.4-GCCcore-9.3.0
zstd/1.4.5-GCCcore-10.2.0 (D)

Where:
Aliases: Aliases exist: foo/1.2.3 (1.2) means that "module load foo/1.2" will load␣

→˓foo/1.2.3
D: Default Module
L: Module is loaded

Module defaults are chosen based on Find First Rules due to Name/Version/Version modules␣
→˓found in the module tree.
See https://lmod.readthedocs.io/en/latest/060_locating.html for details.

Use "module spider" to find all possible modules and extensions.
Use "module keyword key1 key2 ..." to search for all possible modules matching
any of the "keys".

4.3.3 List of Software Modules on Infer V100 Nodes

We realize this list is long, but we provide it here for users who want to peruse and/or search for what they need. For a
more cleanly-formatted option, see this table.

---------------------------- /cm/local/modulefiles -----------------------------
apps (L) gcc/9.2.0 openldap
cluster-tools/9.0 ipmitool/1.8.18 python3
cmd lua/5.3.5 python37
cmjob luajit shared (L)
cuda-dcgm/1.7.1.1 module-git slurm/slurm/19.05.5 (L)

(continues on next page)

68 Chapter 4. Software

ARC Documentation, Release 1.0

(continued from previous page)

dot module-info
freeipmi/1.6.4 null

---------------------------- /usr/share/modulefiles ----------------------------
DefaultModules (L)

---------------------------- /cm/shared/modulefiles ----------------------------
bazel/0.26.1
blacs/openmpi/gcc/64/1.1patch03
blas/gcc/64/3.8.0
bonnie++/1.98
chainer-py37-cuda10.1-gcc/7.1.0
chainer-py37-cuda10.2-gcc/7.7.0
cm-eigen3/3.3.7
cm-pmix3/3.1.4
cub-cuda10.1/1.8.0
cub-cuda10.2/1.8.0
cuda10.1/blas/10.1.243
cuda10.1/fft/10.1.243
cuda10.1/nsight/10.1.243
cuda10.1/profiler/10.1.243
cuda10.1/toolkit/10.1.243
cuda10.2/blas/10.2.89
cuda10.2/fft/10.2.89
cuda10.2/nsight/10.2.89
cuda10.2/profiler/10.2.89
cuda10.2/toolkit/10.2.89
cuda11.1/blas/11.1.0
cuda11.1/fft/11.1.0
cuda11.1/nsight/11.1.0
cuda11.1/profiler/11.1.0
cuda11.1/toolkit/11.1.0
cudnn7.6-cuda10.1/7.6.5.32
cudnn7.6-cuda10.2/7.6.5.32
default-environment
dynet-py37-cuda10.1-gcc/2.1
dynet-py37-cuda10.2-gcc/2.1
fastai-py37-cuda10.1-gcc/1.0.60
fastai-py37-cuda10.2-gcc/1.0.63
fftw2/openmpi/gcc/64/double/2.1.5
fftw2/openmpi/gcc/64/float/2.1.5
fftw3/openmpi/gcc/64/3.3.8
gcc5/5.5.0
gdb/8.3.1
globalarrays/openmpi/gcc/64/5.7
gpytorch-py37-cuda10.1-gcc/1.0.1
gpytorch-py37-cuda10.2-gcc/1.2.0
hdf5/1.10.1
hdf5_18/1.8.21
horovod-mxnet-py37-cuda10.1-gcc/0.19.0
horovod-mxnet-py37-cuda10.2-gcc/0.20.2
horovod-pytorch-py37-cuda10.1-gcc/0.19.0

(continues on next page)

4.3. Lists of Software Installed on ARC Systems 69

ARC Documentation, Release 1.0

(continued from previous page)

horovod-pytorch-py37-cuda10.2-gcc/0.20.2
horovod-tensorflow-py37-cuda10.1-gcc/0.19.0
horovod-tensorflow-py37-cuda10.2-gcc/0.20.2
hpcx/2.4.0
hpl/2.3
hwloc/1.11.11
intel-tbb-oss/ia32/2020.1
intel-tbb-oss/intel64/2020.1
intel/compiler/32/2019/19.0.5
intel/compiler/64/2019/19.0.5 (D)
intel/daal/32/2019/5.281
intel/daal/64/2019/5.281
intel/gdb/64/2019/4.281
intel/ipp/32/2019/5.281
intel/ipp/64/2019/5.281
intel/itac/2019/5.041
intel/mkl/32/2019/5.281
intel/mkl/64/2019/5.281 (D)
intel/mpi/32/2019/5.281
intel/mpi/64/2019/5.281 (D)
intel/tbb/32/2019/5.281
intel/tbb/64/2019/5.281 (D)
iozone/3_487
keras-py37-cuda10.1-gcc/2.3.1
keras-py37-cuda10.2-gcc/2.3.1
lapack/gcc/64/3.8.0
ml-pythondeps-py37-cuda10.1-gcc/3.2.3
ml-pythondeps-py37-cuda10.2-gcc/4.1.2
mpich/ge/gcc/64/3.3.2
mvapich2/gcc/64/2.3.2
mxnet-py37-cuda10.1-gcc/1.5.1
mxnet-py37-cuda10.2-gcc/1.7.0
nccl2-cuda10.1-gcc/2.5.6
nccl2-cuda10.2-gcc/2.7.8
netcdf/gcc/64/gcc/64/4.7.3
netperf/2.7.0
openblas/dynamic/0.2.20
opencv3-py37-cuda10.1-gcc/3.4.9
opencv3-py37-cuda10.2-gcc/3.4.11
openmpi-geib-cuda10.1-gcc/3.1.4
openmpi-geib-cuda10.2-gcc/3.1.4
openmpi/gcc/64/1.10.7
protobuf3-gcc/3.8.0
pytorch-py37-cuda10.1-gcc/1.4.0
pytorch-py37-cuda10.2-gcc/1.6.0
scalapack/openmpi/gcc/2.1.0
tensorflow-py37-cuda10.1-gcc/1.15.2
tensorflow-py37-cuda10.2-gcc/1.15.4
tensorflow2-py37-cuda10.1-gcc/2.0.0
tensorflow2-py37-cuda10.2-gcc/2.2.0
tensorrt-cuda10.1-gcc/6.0.1.5
tensorrt-cuda10.2-gcc/7.0.0.11

(continues on next page)

70 Chapter 4. Software

ARC Documentation, Release 1.0

(continued from previous page)

theano-py37-cuda10.1-gcc/1.0.4
theano-py37-cuda10.2-gcc/1.0.5
ucx/1.6.1
xgboost-py37-cuda10.1-gcc/0.90
xgboost-py37-cuda10.2-gcc/1.2.0

------------------------------ /apps/modulefiles -------------------------------
containers/singularity/3.7.2
infer-skylake_v100/matlab/R2021a
site/infer-skylake_v100/easybuild/arc.arcadm
site/infer-skylake_v100/easybuild/setup (D)
site/infer/easybuild/arc.arcadm
site/infer/easybuild/setup (L,D)
useful_scripts (L)

---------------- /apps/easybuild/modules/infer-skylake_v100/all ----------------
Anaconda3/2020.07
Anaconda3/2020.11 (D)
Autoconf/2.69-GCCcore-8.3.0
Autoconf/2.69-GCCcore-10.2.0 (D)
Automake/1.16.1-GCCcore-8.3.0
Automake/1.16.2-GCCcore-10.2.0 (D)
Autotools/20180311-GCCcore-8.3.0
Autotools/20200321-GCCcore-10.2.0 (D)
Bison/3.3.2-GCCcore-8.3.0
Bison/3.3.2
Bison/3.5.3
Bison/3.7.1-GCCcore-10.2.0
Bison/3.7.1 (D)
CMake/3.15.3-GCCcore-8.3.0
CMake/3.18.4-GCCcore-10.2.0 (D)
CUDA/10.1.243-GCC-8.3.0
CUDA/10.1.243-iccifort-2019.5.281
CUDA/11.1.1-GCC-10.2.0
CUDA/11.1.1-iccifort-2020.4.304 (D)
CUDAcore/11.1.1
Check/0.15.2-GCCcore-10.2.0
DB/18.1.32-GCCcore-8.3.0
DB/18.1.40-GCCcore-10.2.0 (D)
EasyBuild/4.3.4
EasyBuild/4.4.0
EasyBuild/4.4.2 (D)
FFTW/3.3.8-gompic-2019b
FFTW/3.3.8-gompic-2020b (D)
GCC/8.3.0
GCC/10.2.0 (D)
GCCcore/8.3.0
GCCcore/10.2.0 (D)
GDRCopy/2.1-GCCcore-10.2.0-CUDA-11.1.1
M4/1.4.18-GCCcore-8.3.0
M4/1.4.18-GCCcore-10.2.0
M4/1.4.18 (D)

(continues on next page)

4.3. Lists of Software Installed on ARC Systems 71

ARC Documentation, Release 1.0

(continued from previous page)

OpenBLAS/0.3.7-GCC-8.3.0
OpenBLAS/0.3.12-GCC-10.2.0 (D)
OpenMPI/3.1.4-gcccuda-2019b
OpenMPI/4.0.5-gcccuda-2020b (D)
PMIx/3.1.5-GCCcore-10.2.0
Perl/5.30.0-GCCcore-8.3.0
Perl/5.32.0-GCCcore-10.2.0 (D)
ScaLAPACK/2.0.2-gompic-2019b
ScaLAPACK/2.1.0-gompic-2020b (D)
UCX/1.9.0-GCCcore-10.2.0-CUDA-11.1.1
XZ/5.2.4-GCCcore-8.3.0
XZ/5.2.5-GCCcore-10.2.0 (D)
binutils/2.32-GCCcore-8.3.0
binutils/2.32
binutils/2.35-GCCcore-10.2.0
binutils/2.35 (D)
bzip2/1.0.8-GCCcore-8.3.0
bzip2/1.0.8-GCCcore-10.2.0 (D)
cURL/7.66.0-GCCcore-8.3.0
cURL/7.72.0-GCCcore-10.2.0 (D)
expat/2.2.7-GCCcore-8.3.0
expat/2.2.9-GCCcore-10.2.0 (D)
flex/2.6.4-GCCcore-8.3.0
flex/2.6.4-GCCcore-10.2.0
flex/2.6.4 (D)
fosscuda/2019b
fosscuda/2020b (D)
gcccuda/2019b
gcccuda/2020b (D)
gettext/0.19.8.1
gettext/0.21 (D)
gompic/2019b
gompic/2020b (D)
groff/1.22.4-GCCcore-8.3.0
groff/1.22.4-GCCcore-10.2.0 (D)
help2man/1.47.4
help2man/1.47.8-GCCcore-8.3.0
help2man/1.47.16-GCCcore-10.2.0 (D)
hwloc/1.11.12-GCCcore-8.3.0
hwloc/2.2.0-GCCcore-10.2.0
iccifort/2019.5.281
iccifort/2020.4.304 (D)
libarchive/3.4.3-GCCcore-10.2.0
libevent/2.1.12-GCCcore-10.2.0
libfabric/1.11.0-GCCcore-10.2.0
libpciaccess/0.14-GCCcore-8.3.0
libpciaccess/0.16-GCCcore-10.2.0 (D)
libreadline/8.0-GCCcore-8.3.0
libreadline/8.0-GCCcore-10.2.0 (D)
libtool/2.4.6-GCCcore-8.3.0
libtool/2.4.6-GCCcore-10.2.0 (D)
libxml2/2.9.9-GCCcore-8.3.0

(continues on next page)

72 Chapter 4. Software

ARC Documentation, Release 1.0

(continued from previous page)

libxml2/2.9.10-GCCcore-10.2.0 (D)
makeinfo/6.7-GCCcore-8.3.0
makeinfo/6.7-GCCcore-10.2.0 (D)
ncurses/6.0
ncurses/6.1-GCCcore-8.3.0
ncurses/6.2-GCCcore-10.2.0
ncurses/6.2 (D)
numactl/2.0.12-GCCcore-8.3.0
numactl/2.0.13-GCCcore-10.2.0 (D)
pkg-config/0.29.2-GCCcore-10.2.0
xorg-macros/1.19.2-GCCcore-8.3.0
xorg-macros/1.19.2-GCCcore-10.2.0 (D)
zlib/1.2.11-GCCcore-8.3.0
zlib/1.2.11-GCCcore-10.2.0
zlib/1.2.11 (D)

Where:
D: Default Module
L: Module is loaded

Module defaults are chosen based on Find First Rules due to Name/Version/Version modules␣
→˓found in the module tree.
See https://lmod.readthedocs.io/en/latest/060_locating.html for details.

Use "module spider" to find all possible modules and extensions.
Use "module keyword key1 key2 ..." to search for all possible modules matching
any of the "keys".

4.3.4 List of Software Modules on TinkerCliffs A100 Nodes

We realize this list is long, but we provide it here for users who want to peruse and/or search for what they need. For a
more cleanly-formatted option, see this table.

---------------------------- /cm/local/modulefiles -----------------------------
apps (L) ipmitool/1.8.18
cluster-tools/8.2 lua/5.3.5
cm-cloud-copy/8.2 module-git
cmd module-info
cmsub null
cray (L) openldap
cuda-dcgm/2.0.15.1 openmpi/mlnx/gcc/64/4.0.3rc4
dot python2
freeipmi/1.6.2 python36
gcc/8.2.0 shared (L)

---------------------------- /usr/share/modulefiles ----------------------------
DefaultModules (L)

(continues on next page)

4.3. Lists of Software Installed on ARC Systems 73

ARC Documentation, Release 1.0

(continued from previous page)

---------------------------- /cm/shared/modulefiles ----------------------------
amd-blis/aocc/64/2.1
amd-blis/gcc/64/2.1
amd-libflame/aocc/64/2.1
amd-libflame/gcc/64/2.1
aocc/aocc-compiler-2.1.0
aocc/aocc-compiler-2.2.0 (D)
blacs/openmpi/gcc/64/1.1patch03
blas/gcc/64/3.8.0
bonnie++/1.97.3
cm-pmix3/3.1.4
cuda-latest/blas/11.2.0
cuda-latest/fft/11.2.0
cuda-latest/nsight/11.2.0
cuda-latest/profiler/11.2.0
cuda-latest/toolkit/11.2.0 (L)
cuda11.2/blas/11.2.0
cuda11.2/fft/11.2.0
cuda11.2/nsight/11.2.0
cuda11.2/profiler/11.2.0
cuda11.2/toolkit/11.2.0
default-environment
fftw2/openmpi/gcc/64/double/2.1.5
fftw2/openmpi/gcc/64/float/2.1.5
fftw3/openmpi/gcc/64/3.3.8
gdb/8.2
globalarrays/openmpi/gcc/64/5.7
hdf5/1.10.1
hdf5_18/1.8.20
hpl/2.2
hwloc/1.11.11
ics/2020.0
intel-tbb-oss/ia32/2020.2
intel-tbb-oss/intel64/2020.2
iozone/3_482
lapack/gcc/64/3.8.0
mpich/ge/gcc/64/3.3
mvapich2/gcc/64/2.3.2
netcdf/gcc/64/4.6.1
netperf/2.7.0
openblas/dynamic/0.2.20
openmpi/gcc/64/1.10.7
openmpi/gcc/64/4.0.3
openmpi/gcc/64/4.0.4 (D)
openmpi/ics/64/4.0.3
scalapack/openmpi/gcc/64/2.0.2
sge/2011.11p1
slurm/20.02.3 (L)
ucx/1.6.0

------------------------------ /apps/modulefiles -------------------------------
containers/singularity/3.7.1

(continues on next page)

74 Chapter 4. Software

ARC Documentation, Release 1.0

(continued from previous page)

site/tinkercliffs-rome_a100/easybuild/arc.arcadm
site/tinkercliffs-rome_a100/easybuild/setup (D)
site/tinkercliffs/easybuild/arc.arcadm
site/tinkercliffs/easybuild/setup (L,D)
tinkercliffs-rome_a100/matlab/R2021a
useful_scripts (L)

------------------------------- /opt/modulefiles -------------------------------
gcc/8.1.0

---------------------------- /opt/cray/modulefiles -----------------------------
PrgEnv-cray/1.0.6

--------------------------- /opt/cray/pe/modulefiles ---------------------------
cce/10.0.0 cray-mvapich2_nogpu/2.3.4
cdt/20.05 cray-mvapich2_nogpu_gnu/2.3.3
cray-ccdb/3.0.5 cray-mvapich2_nogpu_gnu/2.3.4 (D)
cray-cti/1.0.7 craype-dl-plugin-py3/mvapich/20.05.1
cray-fftw/3.3.8.5 craype-dl-plugin-py3/openmpi/20.05.1
cray-fftw_impi/3.3.8.5 craype/2.6.4
cray-impi/5 craypkg-gen/1.3.7
cray-lgdb/3.0.10 gdb4hpc/3.0.10
cray-libsci/20.03.1 papi/5.7.0.3
cray-mvapich2/2.3.3 perftools-base/20.03.0
cray-mvapich2_gnu/2.3.3 valgrind4hpc/1.0.1

------------------- /opt/cray/pe/craype/default/modulefiles --------------------
craype-accel-nvidia20 craype-ivybridge
craype-accel-nvidia35 craype-mic-knl
craype-accel-nvidia52 craype-network-infiniband (L)
craype-accel-nvidia60 craype-network-opa
craype-accel-nvidia70 craype-sandybridge
craype-broadwell craype-x86-rome (L)
craype-haswell craype-x86-skylake

-------------- /apps/easybuild/modules/tinkercliffs-rome_a100/all --------------
ABAQUS/2018
ATK/2.34.1-GCCcore-8.3.0
ATK/2.36.0-GCCcore-10.2.0 (D)
Anaconda3/2020.07
Anaconda3/2020.11 (D)
Autoconf/2.69-GCCcore-8.3.0
Autoconf/2.69-GCCcore-10.2.0 (D)
Automake/1.16.1-GCCcore-8.3.0
Automake/1.16.2-GCCcore-10.2.0 (D)
Autotools/20180311-GCCcore-8.3.0
Autotools/20200321-GCCcore-10.2.0 (D)
Bazel/3.7.2-GCCcore-10.2.0
Bison/3.3.2-GCCcore-8.3.0
Bison/3.3.2
Bison/3.5.3
Bison/3.7.1-GCCcore-10.2.0

(continues on next page)

4.3. Lists of Software Installed on ARC Systems 75

ARC Documentation, Release 1.0

(continued from previous page)

Bison/3.7.1 (D)
Boost/1.74.0-GCC-10.2.0
CMake/3.15.3-GCCcore-8.3.0
CMake/3.18.4-GCCcore-10.2.0 (D)
CUDA/11.1.1-GCC-10.2.0
CUDAcore/11.1.1
Check/0.15.2-GCCcore-10.2.0
DB/18.1.32-GCCcore-8.3.0
DB/18.1.40-GCCcore-10.2.0 (D)
DBus/1.13.12-GCCcore-8.3.0
Doxygen/1.8.20-GCCcore-10.2.0
EasyBuild/4.3.4
EasyBuild/4.4.0
EasyBuild/4.4.2 (D)
Eigen/3.3.8-GCCcore-10.2.0
FFTW/3.3.8-gompi-2020b
FFTW/3.3.8-gompic-2020b (D)
FFmpeg/4.3.1-GCCcore-10.2.0
FriBidi/1.0.5-GCCcore-8.3.0
FriBidi/1.0.10-GCCcore-10.2.0 (D)
GCC/10.2.0
GCCcore/8.3.0
GCCcore/10.2.0 (D)
GDRCopy/2.1-GCCcore-10.2.0-CUDA-11.1.1
GLib/2.62.0-GCCcore-8.3.0
GLib/2.66.1-GCCcore-10.2.0 (D)
GMP/6.1.2-GCCcore-8.3.0
GMP/6.2.0-GCCcore-10.2.0 (D)
GObject-Introspection/1.63.1-GCCcore-8.3.0-Python-3.7.4
GObject-Introspection/1.66.1-GCCcore-10.2.0 (D)
HDF5/1.10.7-gompic-2020b
ICU/64.2-GCCcore-8.3.0
ICU/67.1-GCCcore-10.2.0 (D)
Java/11.0.2 (11)
JsonCpp/1.9.4-GCCcore-10.2.0
LAME/3.100-GCCcore-10.2.0
LMDB/0.9.24-GCCcore-10.2.0
LibTIFF/4.0.10-GCCcore-8.3.0
LibTIFF/4.1.0-GCCcore-10.2.0 (D)
M4/1.4.18-GCCcore-8.3.0
M4/1.4.18-GCCcore-10.2.0
M4/1.4.18 (D)
MPFR/4.1.0-GCCcore-10.2.0
Meson/0.51.2-GCCcore-8.3.0-Python-3.7.4
Meson/0.55.3-GCCcore-10.2.0 (D)
NASM/2.14.02-GCCcore-8.3.0
NASM/2.15.05-GCCcore-10.2.0 (D)
NCCL/2.8.3-CUDA-11.1.1
NVHPC/21.2
Ninja/1.9.0-GCCcore-8.3.0
Ninja/1.10.1-GCCcore-10.2.0 (D)
OpenBLAS/0.3.12-GCC-10.2.0

(continues on next page)

76 Chapter 4. Software

ARC Documentation, Release 1.0

(continued from previous page)

OpenMM/7.5.0-fosscuda-2020b
OpenMM/7.5.1-fosscuda-2020b (D)
OpenMPI/4.0.5-GCC-10.2.0
OpenMPI/4.0.5-gcccuda-2020b (D)
PCRE/8.43-GCCcore-8.3.0
PCRE/8.44-GCCcore-10.2.0 (D)
PMIx/3.1.5-GCCcore-10.2.0
Perl/5.30.0-GCCcore-8.3.0
Perl/5.32.0-GCCcore-10.2.0 (D)
Pillow/8.0.1-GCCcore-10.2.0
PyCharm/2021.1.1
PyTorch/1.7.1-fosscuda-2020b
PyYAML/5.3.1-GCCcore-10.2.0
Python/2.7.18-GCCcore-10.2.0
Python/3.7.4-GCCcore-8.3.0
Python/3.8.6-GCCcore-10.2.0 (D)
SQLite/3.29.0-GCCcore-8.3.0
SQLite/3.33.0-GCCcore-10.2.0 (D)
SWIG/4.0.2-GCCcore-10.2.0
ScaLAPACK/2.1.0-gompi-2020b
ScaLAPACK/2.1.0-gompic-2020b (D)
SciPy-bundle/2020.11-fosscuda-2020b
Szip/2.1.1-GCCcore-10.2.0
Tcl/8.6.9-GCCcore-8.3.0
Tcl/8.6.10-GCCcore-10.2.0 (D)
TensorFlow/2.4.1-fosscuda-2020b
UCX/1.9.0-GCCcore-10.2.0-CUDA-11.1.1
UCX/1.9.0-GCCcore-10.2.0 (D)
UnZip/6.0-GCCcore-10.2.0
X11/20190717-GCCcore-8.3.0
X11/20201008-GCCcore-10.2.0 (D)
XZ/5.2.4-GCCcore-8.3.0
XZ/5.2.5-GCCcore-10.2.0 (D)
Yasm/1.3.0-GCCcore-10.2.0
Zip/3.0-GCCcore-10.2.0
binutils/2.32-GCCcore-8.3.0
binutils/2.32
binutils/2.34
binutils/2.35-GCCcore-10.2.0
binutils/2.35 (D)
bzip2/1.0.8-GCCcore-8.3.0
bzip2/1.0.8-GCCcore-10.2.0 (D)
cURL/7.66.0-GCCcore-8.3.0
cURL/7.72.0-GCCcore-10.2.0 (D)
cairo/1.16.0-GCCcore-8.3.0
cairo/1.16.0-GCCcore-10.2.0 (D)
cuDNN/8.0.4.30-CUDA-11.1.1
double-conversion/3.1.5-GCCcore-10.2.0
expat/2.2.7-GCCcore-8.3.0
expat/2.2.9-GCCcore-10.2.0 (D)
flatbuffers-python/1.12-GCCcore-10.2.0
flatbuffers/1.12.0-GCCcore-10.2.0

(continues on next page)

4.3. Lists of Software Installed on ARC Systems 77

ARC Documentation, Release 1.0

(continued from previous page)

flex/2.6.4-GCCcore-8.3.0
flex/2.6.4-GCCcore-10.2.0
flex/2.6.4 (D)
fontconfig/2.13.1-GCCcore-8.3.0
fontconfig/2.13.92-GCCcore-10.2.0 (D)
foss/2020b
fosscuda/2020b
freetype/2.10.1-GCCcore-8.3.0
freetype/2.10.3-GCCcore-10.2.0 (D)
gcccuda/2020b
gettext/0.19.8.1
gettext/0.20.1-GCCcore-8.3.0
gettext/0.21-GCCcore-10.2.0
gettext/0.21 (D)
giflib/5.2.1-GCCcore-10.2.0
git/2.28.0-GCCcore-10.2.0-nodocs
gompi/2020b
gompic/2020b
gperf/3.1-GCCcore-8.3.0
gperf/3.1-GCCcore-10.2.0 (D)
groff/1.22.4-GCCcore-8.3.0
groff/1.22.4-GCCcore-10.2.0 (D)
help2man/1.47.4
help2man/1.47.8-GCCcore-8.3.0
help2man/1.47.16-GCCcore-10.2.0 (D)
hwloc/2.2.0-GCCcore-10.2.0
hypothesis/5.41.2-GCCcore-10.2.0
hypothesis/5.41.5-GCCcore-10.2.0 (D)
intltool/0.51.0-GCCcore-8.3.0
intltool/0.51.0-GCCcore-10.2.0 (D)
libarchive/3.4.3-GCCcore-10.2.0
libevent/2.1.12-GCCcore-10.2.0
libfabric/1.11.0-GCCcore-10.2.0
libffi/3.2.1-GCCcore-8.3.0
libffi/3.3-GCCcore-10.2.0 (D)
libiconv/1.16-GCCcore-10.2.0
libjpeg-turbo/2.0.3-GCCcore-8.3.0
libjpeg-turbo/2.0.5-GCCcore-10.2.0 (D)
libpciaccess/0.16-GCCcore-10.2.0
libpng/1.6.37-GCCcore-8.3.0
libpng/1.6.37-GCCcore-10.2.0 (D)
libreadline/8.0-GCCcore-8.3.0
libreadline/8.0-GCCcore-10.2.0 (D)
libtool/2.4.6-GCCcore-8.3.0
libtool/2.4.6-GCCcore-10.2.0 (D)
libxml2/2.9.9-GCCcore-8.3.0
libxml2/2.9.10-GCCcore-10.2.0 (D)
libyaml/0.2.5-GCCcore-10.2.0
magma/2.5.4-fosscuda-2020b
makeinfo/6.7-GCCcore-8.3.0
makeinfo/6.7-GCCcore-10.2.0 (D)
mpi4py/3.0.2-gompi-2020b-timed-pingpong

(continues on next page)

78 Chapter 4. Software

ARC Documentation, Release 1.0

(continued from previous page)

mpi4py/3.1.1-gompi-2020b-timed-pingpong (D)
ncurses/6.0
ncurses/6.1-GCCcore-8.3.0
ncurses/6.2-GCCcore-10.2.0
ncurses/6.2 (D)
nsync/1.24.0-GCCcore-10.2.0
numactl/2.0.13-GCCcore-10.2.0
pixman/0.38.4-GCCcore-8.3.0
pixman/0.40.0-GCCcore-10.2.0 (D)
pkg-config/0.29.2-GCCcore-8.3.0
pkg-config/0.29.2-GCCcore-10.2.0 (D)
pkgconfig/1.5.1-GCCcore-10.2.0-python
protobuf-python/3.14.0-GCCcore-10.2.0
protobuf/3.14.0-GCCcore-10.2.0
pybind11/2.6.0-GCCcore-10.2.0
snappy/1.1.8-GCCcore-10.2.0
typing-extensions/3.7.4.3-GCCcore-10.2.0
util-linux/2.34-GCCcore-8.3.0
util-linux/2.36-GCCcore-10.2.0 (D)
x264/20201026-GCCcore-10.2.0
x265/3.3-GCCcore-10.2.0
xorg-macros/1.19.2-GCCcore-8.3.0
xorg-macros/1.19.2-GCCcore-10.2.0 (D)
zlib/1.2.11-GCCcore-8.3.0
zlib/1.2.11-GCCcore-10.2.0
zlib/1.2.11 (D)

Where:
Aliases: Aliases exist: foo/1.2.3 (1.2) means that "module load foo/1.2" will load␣

→˓foo/1.2.3
D: Default Module
L: Module is loaded

Module defaults are chosen based on Find First Rules due to Name/Version/Version modules␣
→˓found in the module tree.
See https://lmod.readthedocs.io/en/latest/060_locating.html for details.

Use "module spider" to find all possible modules and extensions.
Use "module keyword key1 key2 ..." to search for all possible modules matching
any of the "keys".

4.3. Lists of Software Installed on ARC Systems 79

ARC Documentation, Release 1.0

4.3.5 List of Software Modules on TinkerCliffs Intel AP Nodes

We realize this list is long, but we provide it here for users who want to peruse and/or search for what they need. For a
more cleanly-formatted option, see this table.

---------------------------- /cm/local/modulefiles -----------------------------
apps (L) lua/5.3.5
cluster-tools/8.2 module-git
cm-cloud-copy/8.2 module-info
cmd null
cmsub openldap
cray (L) openmpi/mlnx/gcc/64/4.0.3rc4
dot python2
freeipmi/1.6.2 python36
gcc/8.2.0 shared (L)
ipmitool/1.8.18

---------------------------- /usr/share/modulefiles ----------------------------
DefaultModules (L)

---------------------------- /cm/shared/modulefiles ----------------------------
amd-blis/aocc/64/2.1
amd-blis/gcc/64/2.1
amd-libflame/aocc/64/2.1
amd-libflame/gcc/64/2.1
aocc/aocc-compiler-2.1.0
aocc/aocc-compiler-2.2.0 (D)
blacs/openmpi/gcc/64/1.1patch03
blas/gcc/64/3.8.0
bonnie++/1.97.3
cm-pmix3/3.1.4
cuda-latest/blas/11.2.0
cuda-latest/fft/11.2.0
cuda-latest/nsight/11.2.0
cuda-latest/profiler/11.2.0
cuda-latest/toolkit/11.2.0
cuda11.2/blas/11.2.0
cuda11.2/fft/11.2.0
cuda11.2/nsight/11.2.0
cuda11.2/profiler/11.2.0
cuda11.2/toolkit/11.2.0
default-environment
fftw2/openmpi/gcc/64/double/2.1.5
fftw2/openmpi/gcc/64/float/2.1.5
fftw3/openmpi/gcc/64/3.3.8
gdb/8.2
globalarrays/openmpi/gcc/64/5.7
hdf5/1.10.1
hdf5_18/1.8.20
hpl/2.2
hwloc/1.11.11
ics/2020.0

(continues on next page)

80 Chapter 4. Software

ARC Documentation, Release 1.0

(continued from previous page)

intel-tbb-oss/ia32/2020.2
intel-tbb-oss/intel64/2020.2
iozone/3_482
lapack/gcc/64/3.8.0
mpich/ge/gcc/64/3.3
mvapich2/gcc/64/2.3.2
netcdf/gcc/64/4.6.1
netperf/2.7.0
openblas/dynamic/0.2.20
openmpi/gcc/64/1.10.7
openmpi/gcc/64/4.0.3
openmpi/gcc/64/4.0.4 (D)
openmpi/ics/64/4.0.3
scalapack/openmpi/gcc/64/2.0.2
sge/2011.11p1
slurm/20.02.3 (L)
ucx/1.6.0

------------------------------ /apps/modulefiles -------------------------------
containers/singularity/3.6.3
containers/singularity/3.7.1 (D)
site/tinkercliffs-cascade_lake/easybuild/arc.arcadm
site/tinkercliffs-cascade_lake/easybuild/setup (D)
site/tinkercliffs/easybuild/arc.arcadm
site/tinkercliffs/easybuild/setup (L,D)
tinkercliffs-cascade_lake/matlab/R2021a
tinkercliffs-cascade_lake/starccm+/15.04.010
useful_scripts (L)

------------------------------- /opt/modulefiles -------------------------------
gcc/8.1.0

---------------------------- /opt/cray/modulefiles -----------------------------
PrgEnv-cray/1.0.6

--------------------------- /opt/cray/pe/modulefiles ---------------------------
cce/10.0.0 cray-mvapich2_nogpu/2.3.4
cdt/20.05 cray-mvapich2_nogpu_gnu/2.3.3
cray-ccdb/3.0.5 cray-mvapich2_nogpu_gnu/2.3.4 (D)
cray-cti/1.0.7 craype-dl-plugin-py3/mvapich/20.05.1
cray-fftw/3.3.8.5 craype-dl-plugin-py3/openmpi/20.05.1
cray-fftw_impi/3.3.8.5 craype/2.6.4
cray-impi/5 craypkg-gen/1.3.7
cray-lgdb/3.0.10 gdb4hpc/3.0.10
cray-libsci/20.03.1 papi/5.7.0.3
cray-mvapich2/2.3.3 perftools-base/20.03.0
cray-mvapich2_gnu/2.3.3 valgrind4hpc/1.0.1

------------------- /opt/cray/pe/craype/default/modulefiles --------------------
craype-accel-nvidia20 craype-ivybridge
craype-accel-nvidia35 craype-mic-knl
craype-accel-nvidia52 craype-network-infiniband (L)

(continues on next page)

4.3. Lists of Software Installed on ARC Systems 81

ARC Documentation, Release 1.0

(continued from previous page)

craype-accel-nvidia60 craype-network-opa
craype-accel-nvidia70 craype-sandybridge
craype-broadwell craype-x86-rome (L)
craype-haswell craype-x86-skylake

------------ /apps/easybuild/modules/tinkercliffs-cascade_lake/all -------------
ANSYS/21.1
Anaconda3/2020.07
Anaconda3/2020.11 (D)
Autoconf/2.69-GCCcore-9.3.0
Autoconf/2.69-GCCcore-10.2.0
Autoconf/2.71-GCCcore-10.3.0 (D)
Automake/1.16.1-GCCcore-9.3.0
Automake/1.16.2-GCCcore-10.2.0
Automake/1.16.3-GCCcore-10.3.0 (D)
Autotools/20180311-GCCcore-9.3.0
Autotools/20200321-GCCcore-10.2.0
Autotools/20210128-GCCcore-10.3.0 (D)
Bison/3.3.2
Bison/3.5.3-GCCcore-9.3.0
Bison/3.5.3
Bison/3.7.1-GCCcore-10.2.0
Bison/3.7.1
Bison/3.7.6-GCCcore-10.3.0
Bison/3.7.6 (D)
DB/18.1.40-GCCcore-10.2.0
DB/18.1.40-GCCcore-10.3.0 (D)
EasyBuild/4.3.0
EasyBuild/4.3.3
EasyBuild/4.3.4
EasyBuild/4.4.0
EasyBuild/4.4.2 (D)
FFTW/3.3.8-gompi-2020a
GCC/9.3.0
GCC/10.3.0 (D)
GCCcore/9.3.0
GCCcore/10.2.0
GCCcore/10.3.0 (D)
M4/1.4.18-GCCcore-9.3.0
M4/1.4.18-GCCcore-10.2.0
M4/1.4.18-GCCcore-10.3.0
M4/1.4.18 (D)
OpenBLAS/0.3.9-GCC-9.3.0
OpenMPI/4.1.1-GCC-10.3.0
OpenSSL/1.1
PMIx/3.2.3-GCCcore-10.3.0
Perl/5.30.2-GCCcore-9.3.0
Perl/5.32.0-GCCcore-10.2.0
Perl/5.32.1-GCCcore-10.3.0 (D)
ScaLAPACK/2.1.0-gompi-2020a
UCX/1.8.0-GCCcore-9.3.0
UCX/1.9.0-GCCcore-10.2.0

(continues on next page)

82 Chapter 4. Software

ARC Documentation, Release 1.0

(continued from previous page)

UCX/1.10.0-GCCcore-10.3.0 (D)
XZ/5.2.5-GCCcore-9.3.0
XZ/5.2.5-GCCcore-10.3.0 (D)
binutils/2.34-GCCcore-9.3.0
binutils/2.34
binutils/2.35-GCCcore-10.2.0
binutils/2.35
binutils/2.36.1-GCCcore-10.3.0
binutils/2.36.1 (D)
expat/2.2.9-GCCcore-9.3.0
expat/2.2.9-GCCcore-10.2.0
expat/2.2.9-GCCcore-10.3.0 (D)
flex/2.6.4-GCCcore-9.3.0
flex/2.6.4-GCCcore-10.2.0
flex/2.6.4-GCCcore-10.3.0
flex/2.6.4 (D)
foss/2020a
gettext/0.20.1
gettext/0.21 (D)
gompi/2020a
groff/1.22.4-GCCcore-10.3.0
help2man/1.47.4
help2man/1.47.12-GCCcore-9.3.0
help2man/1.47.16-GCCcore-10.2.0
help2man/1.48.3-GCCcore-10.3.0 (D)
hwloc/2.2.0-GCCcore-9.3.0
hwloc/2.4.1-GCCcore-10.3.0
iccifort/2020.1.217
iccifort/2020.4.304 (D)
iimpi/2020a
iimpi/2020b (D)
imkl/2020.1.217-iimpi-2020a
imkl/2020.4.304-iimpi-2020b (D)
impi/2019.7.217-iccifort-2020.1.217
impi/2019.9.304-iccifort-2020.4.304 (D)
intel/2020a
intel/2020b (D)
libevent/2.1.12-GCCcore-10.3.0
libfabric/1.12.1-GCCcore-10.3.0
libpciaccess/0.16-GCCcore-9.3.0
libpciaccess/0.16-GCCcore-10.3.0 (D)
libreadline/8.0-GCCcore-9.3.0
libreadline/8.0-GCCcore-10.2.0
libreadline/8.1-GCCcore-10.3.0 (D)
libtool/2.4.6-GCCcore-9.3.0
libtool/2.4.6-GCCcore-10.2.0
libtool/2.4.6-GCCcore-10.3.0 (D)
libxml2/2.9.10-GCCcore-9.3.0
libxml2/2.9.10-GCCcore-10.3.0 (D)
makeinfo/6.7-GCCcore-10.3.0
ncurses/6.1
ncurses/6.2-GCCcore-9.3.0

(continues on next page)

4.3. Lists of Software Installed on ARC Systems 83

ARC Documentation, Release 1.0

(continued from previous page)

ncurses/6.2-GCCcore-10.2.0
ncurses/6.2-GCCcore-10.3.0
ncurses/6.2 (D)
numactl/2.0.13-GCCcore-9.3.0
numactl/2.0.13-GCCcore-10.2.0
numactl/2.0.14-GCCcore-10.3.0 (D)
pkg-config/0.29.2-GCCcore-9.3.0
pkg-config/0.29.2-GCCcore-10.2.0
pkg-config/0.29.2-GCCcore-10.3.0 (D)
xorg-macros/1.19.2-GCCcore-9.3.0
xorg-macros/1.19.3-GCCcore-10.3.0 (D)
zlib/1.2.11-GCCcore-9.3.0
zlib/1.2.11-GCCcore-10.2.0
zlib/1.2.11-GCCcore-10.3.0
zlib/1.2.11 (D)

Where:
D: Default Module
L: Module is loaded

Module defaults are chosen based on Find First Rules due to Name/Version/Version modules␣
→˓found in the module tree.
See https://lmod.readthedocs.io/en/latest/060_locating.html for details.

Use "module spider" to find all possible modules and extensions.
Use "module keyword key1 key2 ..." to search for all possible modules matching
any of the "keys".

4.3.6 List of Software Modules on TinkerCliffs AMD Rome Nodes

We realize this list is long, but we provide it here for users who want to peruse and/or search for what they need. For a
more cleanly-formatted option, see this table.

---------------------------- /cm/local/modulefiles -----------------------------
apps (L) lua/5.3.5
cluster-tools/8.2 module-git
cm-cloud-copy/8.2 module-info
cmd null
cmsub openldap
cray (L) openmpi/mlnx/gcc/64/4.0.3rc4
dot python2
freeipmi/1.6.2 python36
gcc/8.2.0 shared (L)
ipmitool/1.8.18

---------------------------- /usr/share/modulefiles ----------------------------
DefaultModules (L)

(continues on next page)

84 Chapter 4. Software

ARC Documentation, Release 1.0

(continued from previous page)

---------------------------- /cm/shared/modulefiles ----------------------------
amd-blis/aocc/64/2.1
amd-blis/gcc/64/2.1
amd-libflame/aocc/64/2.1
amd-libflame/gcc/64/2.1
aocc/aocc-compiler-2.1.0
aocc/aocc-compiler-2.2.0 (D)
blacs/openmpi/gcc/64/1.1patch03
blas/gcc/64/3.8.0
bonnie++/1.97.3
cm-pmix3/3.1.4
cuda-latest/blas/11.2.0
cuda-latest/fft/11.2.0
cuda-latest/nsight/11.2.0
cuda-latest/profiler/11.2.0
cuda-latest/toolkit/11.2.0
cuda11.2/blas/11.2.0
cuda11.2/fft/11.2.0
cuda11.2/nsight/11.2.0
cuda11.2/profiler/11.2.0
cuda11.2/toolkit/11.2.0
default-environment
fftw2/openmpi/gcc/64/double/2.1.5
fftw2/openmpi/gcc/64/float/2.1.5
fftw3/openmpi/gcc/64/3.3.8
gdb/8.2
globalarrays/openmpi/gcc/64/5.7
hdf5/1.10.1
hdf5_18/1.8.20
hpl/2.2
hwloc/1.11.11
ics/2020.0
intel-tbb-oss/ia32/2020.2
intel-tbb-oss/intel64/2020.2
iozone/3_482
lapack/gcc/64/3.8.0
mpich/ge/gcc/64/3.3
mvapich2/gcc/64/2.3.2
netcdf/gcc/64/4.6.1
netperf/2.7.0
openblas/dynamic/0.2.20
openmpi/gcc/64/1.10.7
openmpi/gcc/64/4.0.3
openmpi/gcc/64/4.0.4 (D)
openmpi/ics/64/4.0.3
scalapack/openmpi/gcc/64/2.0.2
sge/2011.11p1
slurm/20.02.3 (L)
ucx/1.6.0

------------------------------ /apps/modulefiles -------------------------------
containers/singularity/3.6.0

(continues on next page)

4.3. Lists of Software Installed on ARC Systems 85

ARC Documentation, Release 1.0

(continued from previous page)

containers/singularity/3.7.1 (D)
site/tinkercliffs-rome/easybuild/arc.arcadm
site/tinkercliffs-rome/easybuild/setup (D)
site/tinkercliffs/easybuild/arc.arcadm
site/tinkercliffs/easybuild/setup (L,D)
tinkercliffs-rome/AccelerateCFD_CE/20210615-foss-2020a
tinkercliffs-rome/LSDyna/R12.0.0
tinkercliffs-rome/Nastran/2021
tinkercliffs-rome/Patran/2021
tinkercliffs-rome/amd-uprof/3.4.475
tinkercliffs-rome/aspect-2.2.0/intel-2019b
tinkercliffs-rome/aspect-2.3.0/gcc-9.3.0
tinkercliffs-rome/aspect-2.3.0/intel-2019b (D)
tinkercliffs-rome/boost-1.58.0/intel-2019b
tinkercliffs-rome/dealii-9.2.0/intel-2019b
tinkercliffs-rome/dealii-9.3.1/gcc-9.3.0
tinkercliffs-rome/dxa/1.3.6-foss-2020b
tinkercliffs-rome/glm-0.9.8.5/intel-2019b
tinkercliffs-rome/guppyCPU/Anaconda3-2020.07
tinkercliffs-rome/julia/1.6.1-foss-2020b
tinkercliffs-rome/julia/1.6.1-gomkl-2020b
tinkercliffs-rome/julia/1.6.2-foss-2020b (D)
tinkercliffs-rome/kaldi/20210429-foss-2020b
tinkercliffs-rome/ls-dyna/R12.0.0
tinkercliffs-rome/ls-dyna/10.2.0-intel-2019b
tinkercliffs-rome/ls-dyna/13.0.0-intel-2019b (D)
tinkercliffs-rome/ls-prepost/4.8
tinkercliffs-rome/matlab/R2021a
tinkercliffs-rome/metis-5.1.0/gcc-8.3.0
tinkercliffs-rome/metis-5.1.0/gcc-9.3.0
tinkercliffs-rome/metis-5.1.0/intel-2019b (D)
tinkercliffs-rome/p4est-2.2/gcc-9.3.0
tinkercliffs-rome/p4est-2.2/intel-2019b (D)
tinkercliffs-rome/p4est/gcc-8.3.0
tinkercliffs-rome/parmetis-4.0.3/gcc-8.3.0
tinkercliffs-rome/parmetis-4.0.3/gcc-9.3.0
tinkercliffs-rome/parmetis-4.0.3/intel-2019b (D)
tinkercliffs-rome/starccm+/12.04.011
tinkercliffs-rome/starccm+/15.04.010 (D)
tinkercliffs-rome/tpl-4.4.18/GCC-9.3.0
tinkercliffs-rome/tpl-4.4.18/intel-2019b (D)
tinkercliffs-rome/trilinos-12.18.1/gcc-8.3.0
tinkercliffs-rome/trilinos-12.18.1/gcc-9.3.0
tinkercliffs-rome/trilinos-12.18.1/intel-2019b (D)
useful_scripts (L)

---------------- /apps/easybuild/modules/tinkercliffs-rome/all -----------------
ABAQUS/2018
ABINIT/8.10.3-intel-2019b
ABySS/2.1.5-gompi-2020a
ANSYS/19.5
ANSYS/20.1

(continues on next page)

86 Chapter 4. Software

ARC Documentation, Release 1.0

(continued from previous page)

ANSYS/20.2
ANSYS/21.1
ANSYS/21.2 (D)
APR-util/1.6.1-GCCcore-10.2.0
APR/1.7.0-GCCcore-10.2.0
ATK/2.36.0-GCCcore-9.3.0
ATK/2.36.0-GCCcore-10.2.0 (D)
AUGUSTUS/3.4.0-foss-2020b
Anaconda3/2020.07
Anaconda3/2020.11 (D)
AtomPAW/4.1.0.5-intel-2019b
Autoconf/2.69-GCCcore-8.3.0
Autoconf/2.69-GCCcore-9.3.0
Autoconf/2.69-GCCcore-10.2.0
Autoconf/2.71-GCCcore-10.3.0 (D)
Automake/1.16.1-GCCcore-8.3.0
Automake/1.16.1-GCCcore-9.3.0
Automake/1.16.2-GCCcore-10.2.0
Automake/1.16.3-GCCcore-10.3.0 (D)
Autotools/20180311-GCCcore-8.3.0
Autotools/20180311-GCCcore-9.3.0
Autotools/20200321-GCCcore-10.2.0
Autotools/20210128-GCCcore-10.3.0 (D)
BCFtools/1.10.2-GCC-9.3.0
BCFtools/1.11-GCC-10.2.0 (D)
BEDTools/2.29.2-GCC-9.3.0
BLAST+/2.10.1-gompi-2020a
BLAST+/2.11.0-gompi-2020b (D)
BUSCO/5.0.0-foss-2020b
BamTools/2.5.1-GCC-9.3.0
BamTools/2.5.1-GCC-10.2.0 (D)
Bazel/3.7.2-GCCcore-10.2.0
Biopython/1.75-intel-2019b-Python-3.7.4
Biopython/1.78-foss-2020a-Python-3.8.2
Biopython/1.78-foss-2020b (D)
Bison/3.0.4
Bison/3.0.5
Bison/3.3.2-GCCcore-8.3.0
Bison/3.3.2
Bison/3.5.3-GCCcore-9.3.0
Bison/3.5.3-intel-2019b
Bison/3.5.3
Bison/3.7.1-GCCcore-10.2.0
Bison/3.7.1
Bison/3.7.6-GCCcore-10.3.0
Bison/3.7.6
Bison/3.7.91 (D)
Boost/1.71.0-iimpi-2019b
Boost/1.72.0-gompi-2020a
Boost/1.74.0-GCC-10.2.0 (D)
Bowtie2/2.4.1-GCC-9.3.0
CGAL/4.14.3-gompi-2020a-Python-3.8.2

(continues on next page)

4.3. Lists of Software Installed on ARC Systems 87

ARC Documentation, Release 1.0

(continued from previous page)

CMake/3.15.3-GCCcore-8.3.0
CMake/3.16.4-GCCcore-9.3.0
CMake/3.16.4-intel-2019b
CMake/3.18.4-GCCcore-10.2.0
CMake/3.20.1-GCCcore-10.3.0 (D)
CP2K/6.1-foss-2020a
DB/18.1.40-GCCcore-10.2.0
DB/18.1.40-GCCcore-10.3.0 (D)
DBus/1.13.12-GCCcore-8.3.0
DBus/1.13.12-GCCcore-9.3.0
DBus/1.13.18-GCCcore-10.2.0 (D)
Dalton/2020-iomkl-2019b-nompi
Dalton/2020-iomkl-2019b (D)
DendroPy/4.5.2-GCCcore-10.2.0
Doxygen/1.8.16-GCCcore-8.3.0
Doxygen/1.8.17-GCCcore-9.3.0
Doxygen/1.8.20-GCCcore-10.2.0
Doxygen/1.9.1-GCCcore-10.3.0 (D)
ELPA/2019.11.001-intel-2019b
EasyBuild/4.2.2
EasyBuild/4.3.2
EasyBuild/4.3.3
EasyBuild/4.3.4
EasyBuild/4.4.0
EasyBuild/4.4.2 (D)
Eigen/3.3.7-GCCcore-9.3.0
Eigen/3.3.7
Eigen/3.3.8-GCCcore-10.2.0
Eigen/3.3.9-GCCcore-10.3.0 (D)
FDS/6.7.1-intel-2019b
FDS/6.7.4-intel-2019b
FDS/6.7.5-intel-2019b (D)
FFTW/3.3.8-gompi-2020a
FFTW/3.3.8-gompi-2020b
FFTW/3.3.8-intel-2019b
FFTW/3.3.9-gompi-2021a (D)
FFmpeg/4.2.1-GCCcore-8.3.0
FFmpeg/4.2.2-GCCcore-9.3.0
FFmpeg/4.3.1-GCCcore-10.2.0 (D)
FLAC/1.3.3-GCCcore-10.2.0
FLAC/1.3.3-GCCcore-10.3.0 (D)
FlexiBLAS/3.0.4-GCC-10.3.0
FriBidi/1.0.5-GCCcore-8.3.0
FriBidi/1.0.9-GCCcore-9.3.0
FriBidi/1.0.10-GCCcore-10.2.0 (D)
GCC/8.3.0
GCC/9.3.0
GCC/10.2.0
GCC/10.3.0 (D)
GCCcore/8.2.0
GCCcore/8.3.0
GCCcore/9.3.0

(continues on next page)

88 Chapter 4. Software

ARC Documentation, Release 1.0

(continued from previous page)

GCCcore/10.2.0
GCCcore/10.3.0 (D)
GDAL/3.0.4-foss-2020a-Python-3.8.2
GDAL/3.3.0-foss-2021a (D)
GEOS/3.8.1-GCC-9.3.0-Python-3.8.2
GEOS/3.9.1-GCC-10.3.0 (D)
GLPK/4.65-GCCcore-8.3.0
GLPK/4.65-GCCcore-9.3.0
GLPK/4.65-GCCcore-10.2.0
GLPK/5.0-GCCcore-10.3.0 (D)
GLib/2.62.0-GCCcore-8.3.0
GLib/2.64.1-GCCcore-9.3.0
GLib/2.66.1-GCCcore-10.2.0
GLib/2.68.2-GCCcore-10.3.0 (D)
GMP/6.1.2-GCCcore-8.3.0
GMP/6.2.0-GCCcore-9.3.0
GMP/6.2.0-GCCcore-10.2.0
GMP/6.2.0-intel-2019b
GMP/6.2.1-GCCcore-10.3.0 (D)
GMT/5.4.5-foss-2020a
GObject-Introspection/1.63.1-GCCcore-8.3.0-Python-3.7.4
GObject-Introspection/1.64.0-GCCcore-9.3.0-Python-3.8.2
GObject-Introspection/1.66.1-GCCcore-10.2.0 (D)
GROMACS/2020.1-foss-2020a-Python-3.8.2
GROMACS/2020.3-foss-2020a-Python-3.8.2 (D)
GSL/2.6-GCC-9.3.0
GSL/2.6-GCC-10.2.0
GSL/2.6-iccifort-2019.5.281
GSL/2.7-GCC-10.3.0 (D)
GTK+/3.24.17-GCCcore-9.3.0
GTK+/3.24.23-GCCcore-10.2.0 (D)
Gdk-Pixbuf/2.40.0-GCCcore-9.3.0
Gdk-Pixbuf/2.40.0-GCCcore-10.2.0 (D)
Ghostscript/9.52-GCCcore-9.3.0
Ghostscript/9.52-intel-2019b
Ghostscript/9.53.3-GCCcore-10.2.0
Ghostscript/9.54.0-GCCcore-10.3.0 (D)
GlobalArrays/5.7.2-intel-2019b
GlobalArrays/5.7.2-iomkl-2019b (D)
Go/1.14
Guile/1.8.8-GCCcore-9.3.0
HDF/4.2.15-GCCcore-10.3.0
HDF5/1.10.2-intel-2019b
HDF5/1.10.2-iomkl-2019b
HDF5/1.10.5-iimpi-2019b
HDF5/1.10.6-gompi-2020a
HDF5/1.10.6-intel-2019b
HDF5/1.10.7-gompi-2020b
HDF5/1.10.7-gompi-2021a
HDF5/1.12.0-gompi-2020a (D)
HMMER/3.3.2-gompi-2020b
HMMER2/2.3.2-GCC-8.3.0

(continues on next page)

4.3. Lists of Software Installed on ARC Systems 89

ARC Documentation, Release 1.0

(continued from previous page)

HPL/2.3-foss-2020a
HPL/2.3-intel-2019b (D)
HTSlib/1.10.2-GCC-9.3.0
HTSlib/1.11-GCC-10.2.0 (D)
HarfBuzz/2.6.4-GCCcore-8.3.0
HarfBuzz/2.6.4-GCCcore-9.3.0
HarfBuzz/2.6.7-GCCcore-10.2.0 (D)
Hypre/2.18.2-intel-2019b
ICU/64.2-GCCcore-8.3.0
ICU/66.1-GCCcore-9.3.0
ICU/66.1-intel-2019b
ICU/67.1-GCCcore-10.2.0
ICU/69.1-GCCcore-10.3.0 (D)
ImageMagick/7.0.10-1-GCCcore-9.3.0
ImageMagick/7.0.10-1-intel-2019b
ImageMagick/7.0.10-35-GCCcore-10.2.0
ImageMagick/7.0.11-14-GCCcore-10.3.0 (D)
JasPer/2.0.14-GCCcore-8.3.0
JasPer/2.0.14-GCCcore-9.3.0
JasPer/2.0.24-GCCcore-10.2.0
JasPer/2.0.28-GCCcore-10.3.0 (D)
Java/11.0.2 (11)
Jellyfish/2.3.0-GCC-9.3.0
JsonCpp/1.9.4-GCCcore-10.2.0
Julia/1.4.2-linux-x86_64
Julia/1.5.1-linux-x86_64 (D)
LAME/3.100-GCCcore-8.3.0
LAME/3.100-GCCcore-9.3.0
LAME/3.100-GCCcore-10.2.0 (D)
LAMMPS/3Mar2020-foss-2020a-Python-3.8.2-kokkos
LLVM/9.0.0-GCCcore-8.3.0
LLVM/9.0.1-GCCcore-9.3.0
LLVM/11.0.0-GCCcore-10.2.0
LLVM/11.1.0-GCCcore-10.3.0 (D)
LMDB/0.9.24-GCCcore-9.3.0
LMDB/0.9.24-GCCcore-10.2.0 (D)
LibTIFF/4.0.10-GCCcore-8.3.0
LibTIFF/4.1.0-GCCcore-8.3.0
LibTIFF/4.1.0-GCCcore-9.3.0
LibTIFF/4.1.0-GCCcore-10.2.0
LibTIFF/4.2.0-GCCcore-10.3.0 (D)
Libint/1.1.6-foss-2020a
Libint/2.6.0-GCC-10.2.0-lmax-6-cp2k (D)
LittleCMS/2.9-GCCcore-8.3.0
LittleCMS/2.9-GCCcore-9.3.0
LittleCMS/2.11-GCCcore-10.2.0
LittleCMS/2.12-GCCcore-10.3.0 (D)
Lua/5.1.5-GCCcore-8.3.0
M4/1.4.17
M4/1.4.18-GCCcore-8.2.0
M4/1.4.18-GCCcore-8.3.0
M4/1.4.18-GCCcore-9.3.0

(continues on next page)

90 Chapter 4. Software

ARC Documentation, Release 1.0

(continued from previous page)

M4/1.4.18-GCCcore-10.2.0
M4/1.4.18-GCCcore-10.3.0
M4/1.4.18 (D)
MATLAB/2019b
METIS/5.1.0-GCCcore-8.3.0
METIS/5.1.0-GCCcore-9.3.0
METIS/5.1.0-GCCcore-10.2.0 (D)
MPFR/4.0.2-GCCcore-8.3.0
MPFR/4.0.2-GCCcore-9.3.0
MPFR/4.1.0-GCCcore-10.2.0 (D)
MUMPS/5.2.1-foss-2020a-metis
MUMPS/5.2.1-intel-2019b-metis (D)
Mako/1.1.0-GCCcore-8.3.0
Mako/1.1.2-GCCcore-9.3.0
Mako/1.1.3-GCCcore-10.2.0
Mako/1.1.4-GCCcore-10.3.0 (D)
MariaDB-connector-c/3.1.7-GCCcore-9.3.0
MariaDB-connector-c/3.1.7-intel-2019b (D)
Mathematica/12.0.0
Mesa/19.1.7-GCCcore-8.3.0
Mesa/19.2.1-GCCcore-8.3.0
Mesa/20.0.2-GCCcore-9.3.0
Mesa/20.2.1-GCCcore-10.2.0
Mesa/21.1.1-GCCcore-10.3.0 (D)
Meson/0.51.2-GCCcore-8.3.0-Python-3.7.4
Meson/0.53.2-GCCcore-9.3.0-Python-3.8.2
Meson/0.53.2-intel-2019b-Python-3.7.4
Meson/0.55.1-GCCcore-9.3.0-Python-3.8.2
Meson/0.55.3-GCCcore-10.2.0
Meson/0.58.0-GCCcore-10.3.0 (D)
MetaEuk/4-GCC-10.2.0
Miniconda3/4.7.10
NAMD/2.13-foss-2020a-mpi
NASM/2.14.02-GCCcore-8.3.0
NASM/2.14.02-GCCcore-9.3.0
NASM/2.15.05-GCCcore-10.2.0
NASM/2.15.05-GCCcore-10.3.0 (D)
NLopt/2.6.1-GCCcore-8.3.0
NLopt/2.6.1-GCCcore-9.3.0
NLopt/2.6.2-GCCcore-10.2.0
NLopt/2.7.0-GCCcore-10.3.0 (D)
NSPR/4.21-GCCcore-8.3.0
NSPR/4.25-GCCcore-9.3.0 (D)
NSS/3.45-GCCcore-8.3.0
NSS/3.51-GCCcore-9.3.0 (D)
NVHPC/20.7
NVHPC/21.2 (D)
Ninja/1.9.0-GCCcore-8.3.0
Ninja/1.10.0-GCCcore-9.3.0
Ninja/1.10.0-intel-2019b
Ninja/1.10.1-GCCcore-10.2.0
Ninja/1.10.2-GCCcore-10.3.0 (D)

(continues on next page)

4.3. Lists of Software Installed on ARC Systems 91

ARC Documentation, Release 1.0

(continued from previous page)

OpenBLAS/0.3.9-GCC-9.3.0
OpenBLAS/0.3.12-GCC-10.2.0
OpenBLAS/0.3.15-GCC-10.3.0 (D)
OpenFOAM/v2006-foss-2020a
OpenMM/7.4.1-intel-2019b-Python-3.7.4
OpenMPI/3.1.4-iccifort-2019.5.281
OpenMPI/4.0.3-GCC-9.3.0
OpenMPI/4.0.3-iccifort-2019.5.281
OpenMPI/4.0.5-GCC-10.2.0
OpenMPI/4.1.1-GCC-10.3.0 (D)
OpenMolcas/18.09-intel-2019b-Python-3.7.4
OpenMolcas/19.11-intel-2019b-Python-3.7.4 (D)
OpenSSL/1.1
OpenSSL/1.1.1e-GCCcore-9.3.0
OpenSSL/1.1.1e-intel-2019b (D)
PCRE/8.43-GCCcore-8.3.0
PCRE/8.44-GCCcore-9.3.0
PCRE/8.44-GCCcore-10.2.0
PCRE/8.44-GCCcore-10.3.0 (D)
PCRE2/10.33-GCCcore-8.3.0
PCRE2/10.34-GCCcore-9.3.0
PCRE2/10.34-intel-2019b
PCRE2/10.35-GCCcore-10.2.0
PCRE2/10.36-GCCcore-10.3.0 (D)
PETSc/3.12.4-intel-2019b
PLUMED/2.5.1-foss-2020a
PLUMED/2.6.0-foss-2020a-Python-3.8.2 (D)
PMIx/3.1.5-GCCcore-8.3.0
PMIx/3.1.5-GCCcore-10.2.0
PMIx/3.2.3-GCCcore-10.3.0 (D)
PROJ/7.0.0-GCCcore-9.3.0
PROJ/8.0.1-GCCcore-10.3.0 (D)
Pango/1.44.7-GCCcore-8.3.0
Pango/1.44.7-GCCcore-9.3.0
Pango/1.47.0-GCCcore-10.2.0 (D)
ParaView/5.8.0-foss-2020a-Python-3.8.2-mpi
Perl/5.30.0-GCCcore-8.3.0
Perl/5.30.2-GCCcore-9.3.0
Perl/5.32.0-GCCcore-10.2.0
Perl/5.32.1-GCCcore-10.3.0 (D)
Pillow/6.2.1-GCCcore-8.3.0
Pillow/7.0.0-GCCcore-9.3.0-Python-3.8.2
Pillow/8.0.1-GCCcore-10.2.0 (D)
PyCharm/2019.3.1
PyCharm/2021.1.1 (D)
PyTorch/1.4.0-foss-2020a-Python-3.8.2
PyTorch/1.6.0-foss-2020a-Python-3.8.2
PyTorch/1.6.0-gomkl-2020a-Python-3.8.2
PyTorch/1.7.1-foss-2020b (D)
PyYAML/5.1.2-GCCcore-8.3.0
PyYAML/5.3-GCCcore-9.3.0
PyYAML/5.3.1-GCCcore-10.2.0 (D)

(continues on next page)

92 Chapter 4. Software

ARC Documentation, Release 1.0

(continued from previous page)

Pysam/0.16.0.1-GCC-9.3.0
Python/2.7.16-GCCcore-8.3.0
Python/2.7.18-GCCcore-9.3.0
Python/2.7.18-GCCcore-10.2.0
Python/3.7.4-GCCcore-8.3.0
Python/3.8.2-GCCcore-9.3.0
Python/3.8.6-GCCcore-10.2.0
Python/3.9.5-GCCcore-10.3.0-bare
Python/3.9.5-GCCcore-10.3.0 (D)
QIIME2/2020.6
Qt5/5.13.1-GCCcore-8.3.0
Qt5/5.14.1-GCCcore-9.3.0 (D)
Qualimap/2.2.1-foss-2020b-R-4.0.3
QuantumESPRESSO/6.5-intel-2019b
R-bundle-Bioconductor/3.12-foss-2020b-R-4.0.3
R/4.0.2-foss-2020a
R/4.0.3-foss-2020b
R/4.1.0-foss-2021a (D)
Ruby/2.7.2-GCCcore-9.3.0
Rust/1.52.1-GCCcore-10.3.0
SAMtools/1.11-GCC-10.2.0
SCOTCH/6.0.9-gompi-2020a
SCOTCH/6.0.9-iimpi-2019b (D)
SCons/4.0.1-GCCcore-10.2.0
SEPP/4.4.0-foss-2020b
SLEPc/3.12.2-intel-2019b
SQLite/3.29.0-GCCcore-8.3.0
SQLite/3.31.1-GCCcore-9.3.0
SQLite/3.31.1-intel-2019b
SQLite/3.33.0-GCCcore-10.2.0
SQLite/3.35.4-GCCcore-10.3.0 (D)
SWIG/4.0.1-GCCcore-8.3.0
SWIG/4.0.1-GCCcore-9.3.0 (D)
ScaFaCoS/1.0.1-foss-2020a
ScaLAPACK/2.1.0-gompi-2020a
ScaLAPACK/2.1.0-gompi-2020b
ScaLAPACK/2.1.0-gompi-2021a-fb (D)
SciPy-bundle/2019.10-intel-2019b-Python-3.7.4
SciPy-bundle/2020.03-foss-2020a-Python-3.8.2
SciPy-bundle/2020.03-gomkl-2020a-Python-3.8.2
SciPy-bundle/2020.11-foss-2020b
SciPy-bundle/2021.05-foss-2021a (D)
Serf/1.3.9-GCCcore-10.2.0
SoX/14.4.2-GCC-10.2.0
SpaceRanger/1.2.2-GCC-9.3.0
Subversion/1.14.0-GCCcore-10.2.0
SuiteSparse/5.6.0-intel-2019b-METIS-5.1.0
SuiteSparse/5.8.1-foss-2020b-METIS-5.1.0 (D)
Szip/2.1.1-GCCcore-8.3.0
Szip/2.1.1-GCCcore-9.3.0
Szip/2.1.1-GCCcore-10.2.0
Szip/2.1.1-GCCcore-10.3.0 (D)

(continues on next page)

4.3. Lists of Software Installed on ARC Systems 93

ARC Documentation, Release 1.0

(continued from previous page)

TINKER/8.8.1-foss-2020a
Tcl/8.6.9-GCCcore-8.3.0
Tcl/8.6.10-GCCcore-9.3.0
Tcl/8.6.10-GCCcore-10.2.0
Tcl/8.6.10-intel-2019b
Tcl/8.6.11-GCCcore-10.3.0 (D)
TensorFlow/2.4.1-foss-2020b
Tk/8.6.10-GCCcore-9.3.0
Tk/8.6.10-GCCcore-10.2.0
Tk/8.6.10-intel-2019b
Tk/8.6.11-GCCcore-10.3.0 (D)
Tkinter/3.8.2-GCCcore-9.3.0
Tkinter/3.8.6-GCCcore-10.2.0 (D)
TopHat/2.1.2-iimpi-2019b
UCX/1.8.0-GCCcore-8.3.0
UCX/1.8.0-GCCcore-9.3.0
UCX/1.9.0-GCCcore-10.2.0
UCX/1.10.0-GCCcore-10.3.0 (D)
UDUNITS/2.2.26-GCCcore-8.3.0
UDUNITS/2.2.26-GCCcore-9.3.0
UDUNITS/2.2.26-GCCcore-10.2.0
UDUNITS/2.2.28-GCCcore-10.3.0 (D)
UnZip/6.0-GCCcore-10.2.0
UnZip/6.0-GCCcore-10.3.0 (D)
VASP/5.4.4-intel-2019b
VTK/8.2.0-foss-2020a-Python-3.8.2
Valgrind/3.16.1-gompi-2020a
Valgrind/3.16.1-iimpi-2019b (D)
VirtualGL/2.6.2-GCCcore-9.3.0
Voro++/0.4.6-GCCcore-9.3.0
WPS/4.2-foss-2020b-dmpar
WRF/4.1.3-intel-2019b-dmpar
WRF/4.2.2-foss-2020b-dm+sm
WRF/4.2.2-foss-2020b-dmpar (D)
Wannier90/2.0.1.1-intel-2019b-abinit
X11/20190717-GCCcore-8.3.0
X11/20200222-GCCcore-9.3.0
X11/20200222-intel-2019b
X11/20201008-GCCcore-10.2.0
X11/20210518-GCCcore-10.3.0 (D)
XML-LibXML/2.0205-GCCcore-9.3.0
XZ/5.2.4-GCCcore-8.3.0
XZ/5.2.5-GCCcore-8.3.0
XZ/5.2.5-GCCcore-9.3.0
XZ/5.2.5-GCCcore-10.2.0
XZ/5.2.5-GCCcore-10.3.0
XZ/5.2.5-intel-2019b (D)
Xvfb/1.20.9-GCCcore-10.2.0
Xvfb/1.20.11-GCCcore-10.3.0 (D)
Yasm/1.3.0-GCCcore-8.3.0
Yasm/1.3.0-GCCcore-9.3.0
Yasm/1.3.0-GCCcore-10.2.0 (D)

(continues on next page)

94 Chapter 4. Software

ARC Documentation, Release 1.0

(continued from previous page)

Zip/3.0-GCCcore-10.2.0
archspec/0.1.0-GCCcore-9.3.0-Python-3.8.2
at-spi2-atk/2.34.2-GCCcore-9.3.0
at-spi2-atk/2.38.0-GCCcore-10.2.0 (D)
at-spi2-core/2.36.0-GCCcore-9.3.0
at-spi2-core/2.38.0-GCCcore-10.2.0 (D)
bcl2fastq2/2.20.0-GCC-9.3.0
binutils/2.30
binutils/2.31.1
binutils/2.32-GCCcore-8.3.0
binutils/2.32
binutils/2.34-GCCcore-9.3.0
binutils/2.34-intel-2019b
binutils/2.34
binutils/2.35-GCCcore-10.2.0
binutils/2.35
binutils/2.36.1-GCCcore-10.3.0
binutils/2.36.1 (D)
bokeh/2.0.2-foss-2020a-Python-3.8.2
bokeh/2.2.3-foss-2020b-Python-3.8.6 (D)
bzip2/1.0.8-GCCcore-8.3.0
bzip2/1.0.8-GCCcore-9.3.0
bzip2/1.0.8-GCCcore-10.2.0
bzip2/1.0.8-GCCcore-10.3.0 (D)
cURL/7.66.0-GCCcore-8.3.0
cURL/7.69.1-GCCcore-9.3.0
cURL/7.72.0-GCCcore-10.2.0
cURL/7.76.0-GCCcore-10.3.0 (D)
cairo/1.16.0-GCCcore-8.3.0
cairo/1.16.0-GCCcore-9.3.0
cairo/1.16.0-GCCcore-10.2.0
cairo/1.16.0-GCCcore-10.3.0 (D)
canu/1.9-GCCcore-8.3.0-Java-11
dask/2.18.1-foss-2020a-Python-3.8.2
dask/2021.2.0-foss-2020b-Python-3.8.6 (D)
double-conversion/3.1.4-GCCcore-8.3.0
double-conversion/3.1.5-GCCcore-9.3.0
double-conversion/3.1.5-GCCcore-10.2.0 (D)
ea-utils/1.04.807-intel-2019b
expat/2.2.7-GCCcore-8.3.0
expat/2.2.9-GCCcore-9.3.0
expat/2.2.9-GCCcore-10.2.0
expat/2.2.9-GCCcore-10.3.0
expat/2.2.9-intel-2019b (D)
flatbuffers-python/1.12-GCCcore-10.2.0
flatbuffers/1.12.0-GCCcore-10.2.0
flex/2.6.4-GCCcore-8.3.0
flex/2.6.4-GCCcore-9.3.0
flex/2.6.4-GCCcore-10.2.0
flex/2.6.4-GCCcore-10.3.0
flex/2.6.4 (D)
fontconfig/2.13.1-GCCcore-8.3.0

(continues on next page)

4.3. Lists of Software Installed on ARC Systems 95

ARC Documentation, Release 1.0

(continued from previous page)

fontconfig/2.13.92-GCCcore-9.3.0
fontconfig/2.13.92-GCCcore-10.2.0
fontconfig/2.13.92-intel-2019b
fontconfig/2.13.93-GCCcore-10.3.0 (D)
foss/2020a
foss/2020b
foss/2021a (D)
freetype/2.10.1-GCCcore-8.3.0
freetype/2.10.1-GCCcore-9.3.0
freetype/2.10.3-GCCcore-10.2.0
freetype/2.10.4-GCCcore-10.3.0 (D)
gaussian/09.e01
gc/7.6.12-GCCcore-9.3.0
gettext/0.19.8.1
gettext/0.20.1-GCCcore-8.3.0
gettext/0.20.1-GCCcore-9.3.0
gettext/0.20.1
gettext/0.21-GCCcore-10.2.0
gettext/0.21-GCCcore-10.3.0
gettext/0.21 (D)
gflags/2.2.2-GCCcore-9.3.0
giflib/5.2.1-GCCcore-10.2.0
git/2.28.0-GCCcore-10.2.0-nodocs
glog/0.4.0-GCCcore-9.3.0
gmsh/4.5.6-intel-2019b-Python-2.7.16
gnuplot/5.2.8-GCCcore-8.3.0
gomkl/2020a
gomkl/2020b
gomkl/2021a (D)
gompi/2020a
gompi/2020b
gompi/2021a (D)
gperf/3.1-GCCcore-8.3.0
gperf/3.1-GCCcore-9.3.0
gperf/3.1-GCCcore-10.2.0
gperf/3.1-GCCcore-10.3.0 (D)
gperftools/2.8-GCCcore-10.2.0
groff/1.22.4-GCCcore-10.3.0
gzip/1.10-GCCcore-9.3.0
gzip/1.10-GCCcore-10.2.0
gzip/1.10-GCCcore-10.3.0 (D)
h5py/2.10.0-foss-2020a-Python-3.8.2
help2man/1.47.4
help2man/1.47.7-GCCcore-8.2.0
help2man/1.47.8-GCCcore-8.3.0
help2man/1.47.12-GCCcore-9.3.0
help2man/1.47.16-GCCcore-10.2.0
help2man/1.48.3-GCCcore-10.3.0 (D)
hwloc/1.11.12-GCCcore-8.3.0
hwloc/2.2.0-GCCcore-8.3.0
hwloc/2.2.0-GCCcore-9.3.0
hwloc/2.2.0-GCCcore-10.2.0

(continues on next page)

96 Chapter 4. Software

ARC Documentation, Release 1.0

(continued from previous page)

hwloc/2.4.1-GCCcore-10.3.0
hypothesis/4.44.2-GCCcore-8.3.0-Python-3.7.4
hypothesis/5.6.0-GCCcore-9.3.0-Python-3.8.2
hypothesis/5.41.2-GCCcore-10.2.0
hypothesis/5.41.5-GCCcore-10.2.0
hypothesis/6.13.1-GCCcore-10.3.0 (D)
iccifort/2019.5.281
iimpi/2019b
iimpi/2021a (D)
imkl/2019.5.281-gompi-2020a
imkl/2019.5.281-iimpi-2019b
imkl/2019.5.281-iompi-2019b
imkl/2020.4.304-gompi-2020b
imkl/2021.2.0-gompi-2021a
imkl/2021.2.0-iimpi-2021a (D)
impi/2018.5.288-iccifort-2019.5.281
impi/2021.2.0-intel-compilers-2021.2.0 (D)
intel-compilers/2021.2.0
intel/2019b
intel/2021a (D)
intltool/0.51.0-GCCcore-8.3.0
intltool/0.51.0-GCCcore-9.3.0
intltool/0.51.0-GCCcore-10.2.0
intltool/0.51.0-GCCcore-10.3.0 (D)
iomkl/2019b
iompi/2019b
kim-api/2.1.3-foss-2020a
libGLU/9.0.1-GCCcore-8.3.0
libGLU/9.0.1-GCCcore-9.3.0
libGLU/9.0.1-GCCcore-10.2.0
libGLU/9.0.1-GCCcore-10.3.0 (D)
libarchive/3.4.3-GCCcore-10.2.0
libarchive/3.5.1-GCCcore-10.3.0 (D)
libcerf/1.13-GCCcore-8.3.0
libdrm/2.4.99-GCCcore-8.3.0
libdrm/2.4.100-GCCcore-9.3.0
libdrm/2.4.102-GCCcore-10.2.0
libdrm/2.4.106-GCCcore-10.3.0 (D)
libepoxy/1.5.4-GCCcore-9.3.0
libepoxy/1.5.4-GCCcore-10.2.0 (D)
libevent/2.1.11-GCCcore-8.3.0
libevent/2.1.11-GCCcore-9.3.0
libevent/2.1.12-GCCcore-10.2.0
libevent/2.1.12-GCCcore-10.3.0 (D)
libfabric/1.11.0-GCCcore-8.3.0
libfabric/1.11.0-GCCcore-10.2.0
libfabric/1.12.1-GCCcore-10.3.0 (D)
libffi/3.2.1-GCCcore-8.3.0
libffi/3.3-GCCcore-9.3.0
libffi/3.3-GCCcore-10.2.0
libffi/3.3-GCCcore-10.3.0
libffi/3.3-intel-2019b (D)

(continues on next page)

4.3. Lists of Software Installed on ARC Systems 97

ARC Documentation, Release 1.0

(continued from previous page)

libgd/2.2.5-GCCcore-8.3.0
libgeotiff/1.5.1-GCCcore-9.3.0
libgeotiff/1.6.0-GCCcore-10.3.0 (D)
libgit2/1.1.0-GCCcore-10.3.0
libglvnd/1.2.0-GCCcore-8.3.0
libglvnd/1.2.0-GCCcore-9.3.0
libglvnd/1.3.2-GCCcore-10.2.0
libglvnd/1.3.3-GCCcore-10.3.0 (D)
libiconv/1.16-GCCcore-10.2.0
libiconv/1.16-GCCcore-10.3.0 (D)
libjpeg-turbo/2.0.3-GCCcore-8.3.0
libjpeg-turbo/2.0.4-GCCcore-9.3.0
libjpeg-turbo/2.0.4-intel-2019b
libjpeg-turbo/2.0.5-GCCcore-10.2.0
libjpeg-turbo/2.0.6-GCCcore-10.3.0 (D)
libmatheval/1.1.11-GCCcore-9.3.0
libogg/1.3.4-GCCcore-10.2.0
libogg/1.3.4-GCCcore-10.3.0 (D)
libpciaccess/0.14-GCCcore-8.3.0
libpciaccess/0.16-GCCcore-8.3.0
libpciaccess/0.16-GCCcore-9.3.0
libpciaccess/0.16-GCCcore-10.2.0
libpciaccess/0.16-GCCcore-10.3.0
libpciaccess/0.16-intel-2019b (D)
libpng/1.6.37-GCCcore-8.3.0
libpng/1.6.37-GCCcore-9.3.0
libpng/1.6.37-GCCcore-10.2.0
libpng/1.6.37-GCCcore-10.3.0 (D)
libreadline/8.0-GCCcore-8.3.0
libreadline/8.0-GCCcore-9.3.0
libreadline/8.0-GCCcore-10.2.0
libreadline/8.1-GCCcore-10.3.0 (D)
libsndfile/1.0.28-GCCcore-8.3.0
libsndfile/1.0.28-GCCcore-9.3.0
libsndfile/1.0.28-GCCcore-10.2.0
libsndfile/1.0.31-GCCcore-10.3.0 (D)
libtirpc/1.3.2-GCCcore-10.3.0
libtool/2.4.6-GCCcore-8.3.0
libtool/2.4.6-GCCcore-9.3.0
libtool/2.4.6-GCCcore-10.2.0
libtool/2.4.6-GCCcore-10.3.0 (D)
libunistring/0.9.10-GCCcore-9.3.0
libunwind/1.3.1-GCCcore-8.3.0
libunwind/1.3.1-GCCcore-9.3.0
libunwind/1.4.0-GCCcore-10.2.0
libunwind/1.4.0-GCCcore-10.3.0 (D)
libvorbis/1.3.7-GCCcore-10.2.0
libvorbis/1.3.7-GCCcore-10.3.0 (D)
libxc/3.0.1-intel-2019b
libxc/4.2.3-intel-2019b
libxc/4.3.4-GCC-9.3.0
libxc/4.3.4-iccifort-2019.5.281 (D)

(continues on next page)

98 Chapter 4. Software

ARC Documentation, Release 1.0

(continued from previous page)

libxml2/2.9.9-GCCcore-8.3.0
libxml2/2.9.10-GCCcore-8.3.0
libxml2/2.9.10-GCCcore-9.3.0
libxml2/2.9.10-GCCcore-10.2.0
libxml2/2.9.10-GCCcore-10.3.0
libxml2/2.9.10-intel-2019b (D)
libxsmm/1.10-GCC-9.3.0
libyaml/0.2.2-GCCcore-8.3.0
libyaml/0.2.2-GCCcore-9.3.0
libyaml/0.2.5-GCCcore-10.2.0 (D)
lpsolve/5.5.2.11-GCC-10.2.0
lz4/1.9.2-GCCcore-9.3.0
lz4/1.9.2-GCCcore-10.2.0
lz4/1.9.3-GCCcore-10.3.0 (D)
makeinfo/6.7-GCCcore-10.3.0
matplotlib/3.2.1-foss-2020a-Python-3.8.2
matplotlib/3.3.3-foss-2020b (D)
minimap2/2.17-GCCcore-9.3.0
molmod/1.4.5-foss-2020a-Python-3.8.2
mpi4py/3.0.2-gompi-2020a-timed-pingpong
mpi4py/3.0.2-iimpi-2019b-timed-pingpong
mpi4py/3.1.1-gompi-2020b-timed-pingpong (D)
nanopolish/0.13.2-foss-2020a-Python-3.8.2
ncdf4/1.17-foss-2020b-R-4.0.3
ncurses/6.0
ncurses/6.1-GCCcore-8.3.0
ncurses/6.1
ncurses/6.2-GCCcore-9.3.0
ncurses/6.2-GCCcore-10.2.0
ncurses/6.2-GCCcore-10.3.0
ncurses/6.2-intel-2019b
ncurses/6.2 (D)
netCDF-Fortran/4.4.4-intel-2019b
netCDF-Fortran/4.5.2-iimpi-2019b
netCDF-Fortran/4.5.3-gompi-2020b (D)
netCDF/4.6.1-intel-2019b
netCDF/4.7.1-iimpi-2019b
netCDF/4.7.4-gompi-2020a
netCDF/4.7.4-gompi-2020b
netCDF/4.8.0-gompi-2021a (D)
nettle/3.5.1-GCCcore-8.3.0
nettle/3.6-GCCcore-10.2.0
nettle/3.7.2-GCCcore-10.3.0 (D)
networkx/2.4-foss-2020a-Python-3.8.2
nodejs/12.16.1-GCCcore-9.3.0
nodejs/12.19.0-GCCcore-10.2.0
nodejs/14.17.0-GCCcore-10.3.0 (D)
nsync/1.24.0-GCCcore-10.2.0
numactl/2.0.12-GCCcore-8.3.0
numactl/2.0.13-GCCcore-8.3.0
numactl/2.0.13-GCCcore-9.3.0
numactl/2.0.13-GCCcore-10.2.0

(continues on next page)

4.3. Lists of Software Installed on ARC Systems 99

ARC Documentation, Release 1.0

(continued from previous page)

numactl/2.0.14-GCCcore-10.3.0 (D)
p4est/2.2-intel-2019b
parallel/20190922-GCCcore-8.3.0
parallel/20200522-GCCcore-9.3.0 (D)
picard/2.21.6-Java-11
pigz/2.6-GCCcore-10.3.0
pixman/0.38.4-GCCcore-8.3.0
pixman/0.38.4-GCCcore-9.3.0
pixman/0.40.0-GCCcore-10.2.0
pixman/0.40.0-GCCcore-10.3.0 (D)
pkg-config/0.29.2-GCCcore-8.3.0
pkg-config/0.29.2-GCCcore-9.3.0
pkg-config/0.29.2-GCCcore-10.2.0
pkg-config/0.29.2-GCCcore-10.3.0 (D)
pkgconfig/1.5.1-GCCcore-9.3.0-Python-3.8.2
pkgconfig/1.5.1-GCCcore-10.2.0-python (D)
prodigal/2.6.3-GCCcore-10.2.0
protobuf-python/3.10.0-foss-2020a-Python-3.8.2
protobuf-python/3.10.0-gomkl-2020a-Python-3.8.2
protobuf-python/3.10.0-intel-2019b-Python-3.7.4
protobuf-python/3.14.0-GCCcore-10.2.0 (D)
protobuf/3.10.0-GCCcore-8.3.0
protobuf/3.10.0-GCCcore-9.3.0
protobuf/3.14.0-GCCcore-10.2.0 (D)
pybind11/2.4.3-GCCcore-8.3.0-Python-3.7.4
pybind11/2.4.3-GCCcore-9.3.0-Python-3.8.2
pybind11/2.6.0-GCCcore-10.2.0
pybind11/2.6.2-GCCcore-10.3.0 (D)
rclone/1.42-amd64
rclone/1.42-foss-2020a-amd64 (D)
re2c/1.2.1-GCCcore-8.3.0
re2c/1.3-GCCcore-9.3.0 (D)
scikit-build/0.10.0-foss-2020a-Python-3.8.2
snappy/1.1.7-GCCcore-8.3.0
snappy/1.1.8-GCCcore-9.3.0
snappy/1.1.8-GCCcore-10.2.0 (D)
sparsehash/2.0.3-GCCcore-9.3.0
tbb/2020.1-GCCcore-9.3.0
tcsh/6.22.02-GCCcore-8.3.0
tcsh/6.22.03-GCCcore-10.2.0 (D)
time/1.9-GCCcore-8.3.0
time/1.9-GCCcore-10.2.0 (D)
typing-extensions/3.7.4.3-GCCcore-10.2.0
utf8proc/2.5.0-GCCcore-10.2.0
util-linux/2.34-GCCcore-8.3.0
util-linux/2.35-GCCcore-9.3.0
util-linux/2.35-intel-2019b
util-linux/2.36-GCCcore-10.2.0
util-linux/2.36-GCCcore-10.3.0 (D)
x264/20190925-GCCcore-8.3.0
x264/20191217-GCCcore-9.3.0
x264/20201026-GCCcore-10.2.0 (D)

(continues on next page)

100 Chapter 4. Software

ARC Documentation, Release 1.0

(continued from previous page)

x265/3.2-GCCcore-8.3.0
x265/3.3-GCCcore-9.3.0
x265/3.3-GCCcore-10.2.0 (D)
xorg-macros/1.19.2-GCCcore-8.3.0
xorg-macros/1.19.2-GCCcore-9.3.0
xorg-macros/1.19.2-GCCcore-10.2.0
xorg-macros/1.19.3-GCCcore-10.3.0 (D)
yaff/1.6.0-foss-2020a-Python-3.8.2
zlib/1.2.11-GCCcore-8.2.0
zlib/1.2.11-GCCcore-8.3.0
zlib/1.2.11-GCCcore-9.3.0
zlib/1.2.11-GCCcore-10.2.0
zlib/1.2.11-GCCcore-10.3.0
zlib/1.2.11 (D)
zstd/1.4.4-GCCcore-9.3.0
zstd/1.4.5-GCCcore-10.2.0
zstd/1.4.9-GCCcore-10.3.0 (D)

------------------------------- /opt/modulefiles -------------------------------
gcc/8.1.0

---------------------------- /opt/cray/modulefiles -----------------------------
PrgEnv-cray/1.0.6

--------------------------- /opt/cray/pe/modulefiles ---------------------------
cce/10.0.0 cray-mvapich2_nogpu/2.3.4
cdt/20.05 cray-mvapich2_nogpu_gnu/2.3.3
cray-ccdb/3.0.5 cray-mvapich2_nogpu_gnu/2.3.4 (D)
cray-cti/1.0.7 craype-dl-plugin-py3/mvapich/20.05.1
cray-fftw/3.3.8.5 craype-dl-plugin-py3/openmpi/20.05.1
cray-fftw_impi/3.3.8.5 craype/2.6.4
cray-impi/5 craypkg-gen/1.3.7
cray-lgdb/3.0.10 gdb4hpc/3.0.10
cray-libsci/20.03.1 papi/5.7.0.3
cray-mvapich2/2.3.3 perftools-base/20.03.0
cray-mvapich2_gnu/2.3.3 valgrind4hpc/1.0.1

------------------- /opt/cray/pe/craype/default/modulefiles --------------------
craype-accel-nvidia20 craype-ivybridge
craype-accel-nvidia35 craype-mic-knl
craype-accel-nvidia52 craype-network-infiniband (L)
craype-accel-nvidia60 craype-network-opa
craype-accel-nvidia70 craype-sandybridge
craype-broadwell craype-x86-rome (L)
craype-haswell craype-x86-skylake

Where:
Aliases: Aliases exist: foo/1.2.3 (1.2) means that "module load foo/1.2" will load␣

→˓foo/1.2.3
D: Default Module
L: Module is loaded

(continues on next page)

4.3. Lists of Software Installed on ARC Systems 101

ARC Documentation, Release 1.0

(continued from previous page)

Module defaults are chosen based on Find First Rules due to Name/Version/Version modules␣
→˓found in the module tree.
See https://lmod.readthedocs.io/en/latest/060_locating.html for details.

Use "module spider" to find all possible modules.
Use "module keyword key1 key2 ..." to search for all possible modules matching
any of the "keys".

4.4 Use of ARC for geospatial analysis

WIP, working with Forestry and iGEP to flesh out relevant examples . . .

4.4.1 Introduction

Geospatial analysis problems often require specialized software and data considerations. Here, we lay out some com-
mon softwares and give examples of use specific to the geospatial community. We will be forward looking and devote
this page to TinkerCliffs and Infer only.

4.4.2 Data location

TinkerCliffs has two main storage systems:

• /projects served by BGFS parallel storage

• /fastscratch served by VAST flash storage

In addition, each compute node has local disk and RAM mounted as a volume.

Generally, data should be moved to the local node for the compute nodes during the computation and results saved,
then transfered back to main ARC storage. To see what local storage is available on each compute node, type env |
grep TMP. This will list the environment variables you can use to access the different storage locations.

4.4.3 Common software and availability

• Python

• Julia

• R

• qGIS

pdal

102 Chapter 4. Software

ARC Documentation, Release 1.0

4.4.4 Interface

There are two types of environments in which the R application can be used on ARC resources:

• Graphical interface via Rstudio OnDemand

• Command-line interface. You can also start R from the command line through the Singularity container.

Note: larger computations should be submitted as jobs, via a traditional job submission script.

4.4.5 R from the command line

To run R from the command line, we need to load the container software and then jump into the container to see R.
From TinkerCliffs, this would look like so:

module load containers/singularity/3.7.1
singularity exec -bind=/work,/projects \

/projects/arcsingularity/ood-rstudio141717-bio_4.1.0.sif R

Note: both /work and /projects are mounted into the container (via bind) so that we can access files outside the
container from those storage locations.

4.4.6 R startup, .Renviron and adding packages

R startup is a bit complicated. There is a really nice writeup here:
https://rviews.rstudio.com/2017/04/19/r-for-enterprise-understanding-r-s-startup/

The R in the container is expecting a startup file at ~/.Renvron.OOD. This file needs to have the location of the user
packages, for example:

R_LIBS_USER=~/R/OOD/Ubuntu-20.04-4.1.1

This directory must exist prior to starting R. If you use the OnDemand Rstudio, it will be automatically created on your
first start of Rstudio.

To install packages from Rstudio, simply do:

install.packages(“package of interest”)

Warning: When using R rom the command line, you need to reverse the search path of the installed packages
prior to installing packages. Make sure the first path in .libPaths() is one you can write to:

> .libPaths()
> .libPaths(.libPaths()[3:1])
> install.packages("package of interest")

4.4. Use of ARC for geospatial analysis 103

https://rviews.rstudio.com/2017/04/19/r-for-enterprise-understanding-r-s-startup/

ARC Documentation, Release 1.0

R from a Script

As we scale up our computing, we will often find the compute takes too long or we need to run many scripts (models)
to get our work done. When this happens, we need to turn to using R via a script. The R script needs to hands free, ie
no user action necessary in execution of the full script. To accomplish this on ARC, we actually need two scripts:

1. an R script with the actual R code we are needing to run

2. a shell script for submission to the cluster batch schedulers

The R script should load/generate the data, do the compute, and save the results. As an example, from a login node,
you can type:

sbatch run_R.sh

This will submit the script run_R.sh to the (slurm) scheduler. This script in turn, loads the singularity software for
running R and runs the R script, hp_mpg.R, via Rscript. Both scripts are shown below.

hp_mpg.R
R script for generating a plot of mpg vs hp
library(ggplot2)
attach(mtcars)
p <- gglot(data=mtcars, aes(x=hp, y=mpg)) + geom_line()
ggsave(file="hp_mpg.pdf",p)

Given the R script, we still need a seperate script as the job submission script. This script should contain Slurm
directives detailing what compute resources are needed, loading of any required software, and finally running the
application of interest.

#!/bin/bash

run_R.sh
###
environment & variable setup
####### job customization
#SBATCH --name="mpg plot"
#SBATCH -N 1
#SBATCH -n 16
#SBATCH -t 1:00:00
#SBATCH -p normal_q
#SBATCH -A <your account>
####### end of job customization
end of environment & variable setup
###
add modules on TC/Infer
module load module load containers/singularity/3.7.1
from DT/CA, use module load singularity
module list
#end of add modules
###
###print script to keep a record of what is done
cat hp_mpg.R
cat run_R.sh
###
echo start running R

(continues on next page)

104 Chapter 4. Software

ARC Documentation, Release 1.0

(continued from previous page)

note, on DT/CA, you should replace projects with groups

singularity exec -bind=/work,/projects \
/projects/arcsingularity/ood-rstudio141717-bio_4.1.0.sif Rscript hp_mpg.R

exit;

Parallel Computing in R

parallel package

MPI

Coming soon-ish

4.5 LS-DYNA

4.5.1 Introduction

LS-DYNA is a general-purpose finite element program capable of simulating complex real world problems. It is used
by the automobile, aerospace, construction, military, manufacturing, and bioengineering industries. LS-DYNA is op-
timized for shared and distributed memory Unix, Linux, and Windows based, platforms, and it is fully QA’d by LSTC.
The code’s origins lie in highly nonlinear, transient dynamic finite element analysis using explicit time integration.

4.5.2 Availability

LS-DYNA is available on several ARC systems. Virginia Tech’s IT Procurement and Licensing Solutions manages any
centrally hosted LS-DYNA network licenses, but primarily researcher are using licenses purchased by their group or
their department. These can be used for the SMP, MPP, and Hybrid versions of LS-DYNA. LSTC also develops its
own preprocessor, LS-PrePost, which is freely distributed and runs without a license.

License availability

Recent installations of LS-DYNA on ARC systems make available LSTC’s license tools which can be used to query the
server for licenses which have been checked out, how many are currently available, and kill and “zombified” license
checkouts (as happens if LS-DYNA terminates in an unexpected manner).

For the following commands to work, you must have loaded an LS-DYNA module which provides these programs. If
it does not provide them, you will get an error like lstc_qrun: no such file or directory

Check Number of Licenses Available

• Load the LS-DYNA module (eg. module load tinkercliffs-rome/ls-dyna/10.2.0-intel-2019b for
v. 10.2 on Tinkercliffs)

• Set and export the LSTC_LICENSE_SERVER evironment variable to the name of the license server you want to
check (eg. ansys.software.vt.edu for the main Virginia Tech LS-DYNA license server).

• Run the command lstc_qrun -L LS-DYNA to query SMP licenses or lstc_qrun -L MPPDYNA to query MPP
licenses.

4.5. LS-DYNA 105

https://lstc.com/products/ls-dyna
https://itpals.vt.edu/

ARC Documentation, Release 1.0

For example:

$ module load tinkercliffs-rome/ls-dyna/10.2.0-intel-2019b
$ export LSTC_LICENSE_SERVER=<hostname of departmental license server>
$ lstc_qrun -L MPPDYNA
Defaulting to server 1 specified by LSTC_LICENSE_SERVER variable
500 LICENSE(S) AVAILABLE for PROG=MPPDYNA USER=brownm12 HOST=tinkercliffs2 IP=198.82.
→˓249.14
$ lstc_qrun -L LS-DYNA
Defaulting to server 1 specified by LSTC_LICENSE_SERVER variable
500 LICENSE(S) AVAILABLE for PROG=LS-DYNA USER=brownm12 HOST=tinkercliffs2 IP=198.82.
→˓249.14

Query Licenses Currently Checked Out From License Server

• Load the LS-DYNA module (eg. module load tinkercliffs-rome/ls-dyna/10.2.0-intel-2019b for
v. 10.2 on Tinkercliffs)

• Set and export the LSTC_LICENSE_SERVER evironment variable to the name of the license server you want to
check (eg. ansys.software.vt.edu for the main Virginia Tech LS-DYNA license server).

• Run the command lstc_qrun

$ module load tinkercliffs-rome/ls-dyna/10.2.0-intel-2019b
$ export LSTC_LICENSE_SERVER=ansys.software.vt.edu
$ lstc_qrun
Defaulting to server 1 specified by LSTC_LICENSE_SERVER variable

Running Programs

User Host Program Started # procs

brownm12 205377@tc154.cm.cluster MPPDYNA Wed Oct 20 10:00 16
No programs queued

Kill a zombified LS-DYNA license

• Load the LS-DYNA module (eg. module load tinkercliffs-rome/ls-dyna/10.2.0-intel-2019b for
v. 10.2 on Tinkercliffs)

• Set and export the LSTC_LICENSE_SERVER evironment variable to the name of the license server you want to
use (eg. ansys.software.vt.edu for the main Virginia Tech LS-DYNA license server).

• Run the command lstc_qrun (see above) to and note the “Host” column entry for the program to kill.

• Run the command lstc_qkill <program to kill>

$ module load tinkercliffs-rome/ls-dyna/10.2.0-intel-2019b
$ export LSTC_LICENSE_SERVER=ansys.software.vt.edu
$ lstc_qkill 205377@tc154.cm.cluster

106 Chapter 4. Software

ARC Documentation, Release 1.0

4.5.3 Interface

There are two types of environments in which the LSTC applications can be used on ARC resources:

• Graphical interface for LS-PrePost via OnDemand

• Command-line interface. You can also start LS-DYNA from the command line on Unix systems where MATLAB
is installed. Note that the command line runs on the login node, so big computations should be submitted as jobs
via a traditional job submission.

4.5.4 Parallel Computing with LS-DYNA

There are three primary modes of obtaining parallelism in LS-DYNA. All of these are also built to take advantage of mi-
croarchitecture vectorization instructions like AVX2 and AVX512 and ARC attempts to provide LS-DYNA executables
optimized for local the microarchitecture of the system.

• SMP: Shared Memory Parallel. Execution is limited to a single node since the threads require shared access to
the same memory space.

• MPP: Message Passing Parallel. Several or many processes are launched and run as if each is on its own computer
with dedicated memory. The discretization of the domain is divided equally (more or less) between the processes
(ie. “domain decomposition”) and each process is carries out the simulation on its subdomain. Neighboring
subdomains affect each other, so processes must pass messages (MPI) to share the necessary data. This mode
can scale to a large number of processors across many machines, but the overhead of subdividing the domain
and passing messages becomes significant.

• Hybrid: MPP combined with SMP.

As of October 2021, Virginia Tech’s central license pool is for 500 concurrent cores which can be allocated among all
running programs.

4.5.5 Job Submission

Hybrid

To use the LS-DYNA hybrid mode of parallelism, you need to consider how many MPI processes (aka tasks/ranks)
you want and how much SMP (shared memory parallelism) to provide to each MPI process. This combination is also
constrained by the total number of licenses available when your job starts. So ntasks * cpus-per-task must be a
licensable number.

Some scaling tests with example code on Tinkercliffs suggest that the time-to-completion in Hybrid mode does not
improve beyond 16 MPP procs and that when the number of MPP procs is scaled beyond 32, it will increase instead of
decrease. So we suggest $SBATCH --ntasks=16 or smaller.

Similar tests show that when the number of SMP threads exceeds 8, the time-to-completion shows high variability
and diminished returns, so we suggest $SBATCH --cpus-per-task=8 with 4 and 16 possibly providing comparable
performance.

The --cpus-per-task and --ntasks options work together to inform Slurm how many cores to allocate for the job
and also how to lauch the processes when the srun launcher is used. But LS-DYNA also needs to be directed how
many threads to use and this is accomplished by providing the ncpu=-## option to the LS-DYNA hybrid program.

#SBATCH --ntasks=4
#SBATCH --cpus-per-task=8

module reset
(continues on next page)

4.5. LS-DYNA 107

ARC Documentation, Release 1.0

(continued from previous page)

module load tinkercliffs-rome/ls-dyna/10.2.0-intel-2019b
export LSTC_LICENSE_SERVER=ansys.software.vt.edu

srun --mpi=pmi2 ls-dyna_hyb_d_R10_2_0_x64_centos65_ifort160_avx2_intelmpi-2018 i=shock02.
→˓k ncpu=-$SLURM_CPUS_PER_TASK

4.5.6 Example Scaling Results for Hybrid:

shock02_nt-8_cpt-2: Elapsed time 22 seconds for 47494 cycles using 8 MPP␣
→˓procs and 2 SMP threads
shock02_nt-4_cpt-2: Elapsed time 23 seconds for 47494 cycles using 4 MPP␣
→˓procs and 2 SMP threads
shock02_nt-8_cpt-4: Elapsed time 23 seconds for 47494 cycles using 8 MPP␣
→˓procs and 4 SMP threads
shock02_nt-4_cpt-4: Elapsed time 24 seconds for 47494 cycles using 4 MPP␣
→˓procs and 4 SMP threads
shock02_nt-4_cpt-64: Elapsed time 24 seconds for 7264 cycles using 4 MPP␣
→˓procs and 64 SMP threads
shock02_nt-8_cpt-4: Elapsed time 24 seconds for 47494 cycles using 8 MPP␣
→˓procs and 4 SMP threads
shock02_nt-4_cpt-1: Elapsed time 25 seconds for 47494 cycles using 4 MPP␣
→˓procs and 1 SMP thread
shock02_nt-4_cpt-4: Elapsed time 25 seconds for 47494 cycles using 4 MPP␣
→˓procs and 4 SMP threads
shock02_nt-4_cpt-4: Elapsed time 25 seconds for 47494 cycles using 4 MPP␣
→˓procs and 4 SMP threads
shock02_nt-4_cpt-8: Elapsed time 25 seconds for 47494 cycles using 4 MPP␣
→˓procs and 8 SMP threads
shock02_nt-16_cpt-2: Elapsed time 26 seconds for 47494 cycles using 16 MPP␣
→˓procs and 2 SMP threads
shock02_nt-8_cpt-4: Elapsed time 26 seconds for 47494 cycles using 8 MPP␣
→˓procs and 4 SMP threads
shock02_nt-2_cpt-8: Elapsed time 27 seconds for 47494 cycles using 2 MPP␣
→˓procs and 8 SMP threads
shock02_nt-4_cpt-8: Elapsed time 27 seconds for 47494 cycles using 4 MPP␣
→˓procs and 8 SMP threads
shock02_nt-8_cpt-1: Elapsed time 27 seconds for 47494 cycles using 8 MPP␣
→˓procs and 1 SMP thread
shock02_nt-16_cpt-2: Elapsed time 28 seconds for 47494 cycles using 16 MPP␣
→˓procs and 2 SMP threads
shock02_nt-2_cpt-1: Elapsed time 28 seconds for 47494 cycles using 2 MPP␣
→˓procs and 1 SMP thread
shock02_nt-2_cpt-4: Elapsed time 28 seconds for 47494 cycles using 2 MPP␣
→˓procs and 4 SMP threads
shock02_nt-8_cpt-16: Elapsed time 28 seconds for 47494 cycles using 8 MPP␣
→˓procs and 16 SMP threads
shock02_nt-8_cpt-2: Elapsed time 28 seconds for 47494 cycles using 8 MPP␣
→˓procs and 2 SMP threads
shock02_nt-16_cpt-1: Elapsed time 29 seconds for 47494 cycles using 16 MPP␣
→˓procs and 1 SMP thread

(continues on next page)

108 Chapter 4. Software

ARC Documentation, Release 1.0

(continued from previous page)

shock02_nt-2_cpt-8: Elapsed time 29 seconds for 47494 cycles using 2 MPP␣
→˓procs and 8 SMP threads
shock02_nt-1_cpt-4: Elapsed time 30 seconds for 47494 cycles using 1 MPP proc␣
→˓ and 4 SMP threads
shock02_nt-2_cpt-2: Elapsed time 30 seconds for 47494 cycles using 2 MPP␣
→˓procs and 2 SMP threads
shock02_nt-16_cpt-2: Elapsed time 31 seconds for 47494 cycles using 16 MPP␣
→˓procs and 2 SMP threads
shock02_nt-32_cpt-1: Elapsed time 31 seconds for 47494 cycles using 32 MPP␣
→˓procs and 1 SMP thread
shock02_nt-32_cpt-1: Elapsed time 31 seconds for 47494 cycles using 32 MPP␣
→˓procs and 1 SMP thread
shock02_nt-16_cpt-4: Elapsed time 32 seconds for 47494 cycles using 16 MPP␣
→˓procs and 4 SMP threads
shock02_nt-32_cpt-2: Elapsed time 32 seconds for 47494 cycles using 32 MPP␣
→˓procs and 2 SMP threads
shock02_nt-16_cpt-4: Elapsed time 33 seconds for 47494 cycles using 16 MPP␣
→˓procs and 4 SMP threads
shock02_nt-2_cpt-16: Elapsed time 33 seconds for 47494 cycles using 2 MPP␣
→˓procs and 16 SMP threads
shock02_nt-2_cpt-2: Elapsed time 33 seconds for 47494 cycles using 2 MPP␣
→˓procs and 2 SMP threads
shock02_nt-2_cpt-8: Elapsed time 33 seconds for 47494 cycles using 2 MPP␣
→˓procs and 8 SMP threads
shock02_nt-32_cpt-2: Elapsed time 33 seconds for 47494 cycles using 32 MPP␣
→˓procs and 2 SMP threads
shock02_nt-8_cpt-1: Elapsed time 33 seconds for 47494 cycles using 8 MPP␣
→˓procs and 1 SMP thread
shock02_nt-8_cpt-2: Elapsed time 33 seconds for 47494 cycles using 8 MPP␣
→˓procs and 2 SMP threads

4.6 MATLAB

4.6.1 Introduction

MATLAB handles a range of computing tasks in engineering and science, from data acquisition and analysis to ap-
plication development. The MATLAB environment integrates mathematical computing, visualization, and a powerful
technical language. It is especially well-suited to vectorized calculations and has a Parallel Computing Toolbox (not
included in all licenses) that streamlines parallelization of code.

4.6. MATLAB 109

http://www.mathworks.com/

ARC Documentation, Release 1.0

4.6.2 Availability

MATLAB is available on several ARC systems. ARC maintains a MATLAB Distributed Computing Server license for
parallel MATLAB through cooperation with the university’s IT Procurement and Licensing Solutions, who also offer
discounted licenses to departments and students (note that MATLAB is also included in some of the Student Bundles).

4.6.3 Interface

There are two types of environments in which the MATLAB application can be used on ARC resources:

• Graphical interface via OnDemand

• Command-line interface. You can also start MATLAB from the command line on Unix systems where MATLAB
is installed. Note that the command line runs on the login node, so big computations should be submitted as jobs,
either from via a traditional job submission or from within MATLAB.

4.6.4 Parallel Computing in MATLAB

There are two primary means of obtaining parallelism in MATLAB:

• parfor: Replacing a for loop with a parfor loop splits the loop iterations among a group of processors. This
requires that the loop iterations be independent of each other.

• spmd: Single program multiple data (spmd) allows multiple processors to execute a single program (similar to
MPI).

4.6.5 Job Submission

This page contains instructions for submitting jobs from MATLAB to ARC clusters.

Note: Right now this documentation applies to TinkerCliffs and Infer only, and only allows intracluster job submission
(from cluster login nodes). More general information on jobs on ARC machines is available here and in the video
tutorials.

Setup

Setup is as simple as starting MATLAB on a login node and then running

>> configCluster

Note: Do this once on TinkerCliffs or Infer, or anytime you switch between clusters. (Or anytime you start MATLAB
- it won’t hurt to run it more often than necessary.)

110 Chapter 4. Software

https://itpals.vt.edu/
http://www2.ita.vt.edu/software/student/bundles/index.html

ARC Documentation, Release 1.0

Running Jobs

After that, the key commands are:

• c=parcluster to get the cluster configuration

• c.AdditionalProperties is a structure where you can set job parameters. You must set AccountName to
the allocation account to which you want to submit the job; the other paramters are optional. Commonly-used
properties are:

– AccountName: Allocation account (required)

– WallTime

– Partition

– GpusPerNode

– AdditionalSubmitArgs: Any other standard flags that you want to submit directly to the scheduler

• batch(c,...) to submit the job

An example is below.

Checking Jobs

The job structure returned by batch() can be queried to get the job state, outputs, diary (command line output), etc.
See the example below.

MATLAB also comes with a Job Monitor to allow tracking of remote jobs via a graphical interface. Right-clicking on
jobs will allow you to show its output, load its variables, delete it, etc.

Remote Output Files

Remote MATLAB jobs start in the directory specified by the CurrentFolder parameter to batch(). Output files
written to remote jobs will be saved in this location. Alternatively, you may specify the full path to where you want it
to save the file, e.g.

save('/home/johndoe/output')

Note that if you submit from your personal machine, these files will not be copied back to your local machine; you will
need to manually log into the machine to get them. Alternatively, you can tell MATLAB to change to the directory
on the ARC cluster where job information is stored; MATLAB will automatically mirror this location to your local
machine when the job completes. Here is an example command for switching to the job directory:

cd(sprintf('%s/%s',getenv('MDCE_STORAGE_LOCATION'),getenv('MDCE_JOB_LOCATION')));

Note that once the job completes, you will need to look in its local job directory to get the output files; this location can
be configured in your local cluster profile. Be sure to remove any output files you need before deleting your job (e.g.
with the delete command).

4.6. MATLAB 111

https://www.mathworks.com/help/parallel-computing/job-monitor.html

ARC Documentation, Release 1.0

Full Example

Here we set up a cluster profile and then submit a job to compute the number of primes between 1 and 10 million using
the prime_fun parallel MATLAB example. MATLAB runs the job and returns the correct answer: 664,579.

(Note that to run this example, we’ve downloaded the code to a directory on TinkerCliffs and then changed to that
directory.)

[johndoe@tinkercliffs2 prime_fun]$ module load $LMOD_SYSTEM_NAME/matlab/R2021a
[johndoe@tinkercliffs2 prime_fun]$ matlab -nodisplay

< M A T L A B (R) >
Copyright 1984-2021 The MathWorks, Inc.
R2021a (9.10.0.1602886) 64-bit (glnxa64)
February 17, 2021

To get started, type doc.
For product information, visit www.mathworks.com.

>> configCluster
>> c = parcluster;
>> c.AdditionalProperties.AccountName = 'arcadm';
>> j = batch(c,@prime_fun,1,{10000000},'pool',4);

additionalSubmitArgs =

'--ntasks=5 --cpus-per-task=1 --ntasks-per-core=1 -A arcadm'

>> j.State

ans =

'running'

>> j.State

ans =

'finished'

>> j.fetchOutputs{1}

ans =

664579

112 Chapter 4. Software

https://github.com/AdvancedResearchComputing/examples/blob/master/matlab/prime_fun.m

ARC Documentation, Release 1.0

4.6.6 Submitting Jobs from the Linux Command Line

MATLAB jobs can also be submitted from the Linux command line like any other jobs; however, the parallelism
is currently limited to the cores on a single node. This example uses parfor to count in parallel the prime numbers
between 1 and 10,000,000. (The correct answer is 664,579.) A submission script to submit it as a job from the command
line is provided here. To submit it as a job using your personal allocation use:

sbatch -Apersonal matlab_tinkercliffs_rome.sh

More general information on jobs on ARC machines is available here and in the video tutorials.

4.6.7 Changing MATLAB’s Path

To add a folder to MATLAB’s path on ARC’s systems, edit the MATLABPATH environment variable. This can be made
permanent by editing it in your .bashrc file. For example, this line would add the folder mydir in your Home directory
to MATLAB’s path anytime it opens in your account:

echo "export MATLABPATH=\\$HOME/mydir:\$MATLABPATH\" >> ~/.bashrc

An alternative is to create a pathdef.m file in the directory where MATLAB starts. This will add folders to MATLAB’s
path whenever it starts in the folder where pathdef.m is located. For example, the following at the MATLAB command
line would add mydir to the path when MATLAB opens in your Home directory:

addpath('/home/johndoe/mydir');
savepath('/home/johndoe/pathdef.m')

4.6.8 Using the MATLAB Compiler (mex)

To compile C/C++ or Fortran code in MATLAB, just make sure to load the compiler module that you want to use before
you open MATLAB. Here is an example of compiling MatConvNet, which in this case requires the GCC compiler,
which is available via the foss module:

#load modules
module reset; module load foss/2020b matlab/R2021a

#open matlab and do the install
#(vl_compilenn is the installer script in this case)
matlab -nodisplay
[matlab starts]
>> vl_compilenn

4.7 Python

4.7.1 Introduction

Python is free software for computing and graphics used heavily in the AI/ML space.

4.7. Python 113

https://github.com/AdvancedResearchComputing/examples/blob/master/matlab/prime_fun.m
https://github.com/AdvancedResearchComputing/examples/tree/master/matlab
http://www.vlfeat.org/matconvnet/
https://www.python.org/

ARC Documentation, Release 1.0

4.7.2 Availability

Python is available on all clusters in all queues (partitions) through Python modules, Anaconda modules or Singularity
containers.

4.7.3 Interface

There are two types of environments in which the python application can be used on ARC resources:

• Graphical interface via OnDemand using Jupyter

• Command-line interface. You can also start python from the command line after loading the required software
module.

Note: Larger computations should be submitted as jobs, via a traditional job submission script.

4.7.4 Managing environments

The power of python is through extension of the base functionality via python packages. Managing and configuring
your local python environment is best accomplished through a combination of a package manager (pip or conda) and an
evironment manager Anaconda (or miniconda or micoromamba). Creation and use of conda environments allows one
to activate the environment for later use. You can have several environments, each with different software dependencies,
where you activate the one of interest at run time. Commonly, you will create a conda env, install software into it via
conda/pip and then activate it for use. For example:

module load Anaconda3/2020.11
conda create -n mypy3 python=3.8 pip
source activate mypy3
conda install ipykernel
pip install plotly kaleido

Source activating the environment ensures later conda or pip installs will install into the environment location. For a
more full discussion and examples, please see the Anaconda documentation:
https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html

4.7.5 Running without environments

If you prefer to use python without an environment, you will need to set the PYTHONUSERBASE environment variable
to a location you can write to. For example:

#load a python module
module reset; module load Python/3.8.6-GCCcore-10.2.0
#give python a directory where it can install/load personalized packages
#you may want to make this more specific to cluster/node type/python version
export PYTHONUSERBASE=$HOME/python3
#install a package (--user tells python to install to the location
#specified by PYTHONUSERBASE)
pip install --user plotly

114 Chapter 4. Software

https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html

ARC Documentation, Release 1.0

4.7.6 Command line running of Python scripts

First, we need both a python script and (likely) the conda environment setup. The environment for this example was
shown above as mypy3.

violins.py
import plotly.express as px
using the tips dataset
df = px.data.tips()
plotting the violin chart
fig = px.violin(df, x="day", y="total_bill")
fig.write_image("fig1.jpeg")

Second, we need a shell script to submit to the Slurm scheduler. The script needs to specify the required compute
resources, load the required software and finally run the actual script.

#!/bin/bash

python.sh
###
environment & variable setup
####### job customization
#SBATCH -N 1
#SBATCH -n 16
#SBATCH -t 1:00:00
#SBATCH -p normal_q
#SBATCH -A <your account>
####### end of job customization
end of environment & variable setup
###
add modules:
module load Anaconda/2020.11
module list
#end of add modules
###
###print script to keep a record of what is done
cat python.sh
echo "python code"
cat violins.py
###
echo start load env and run python

source activate mypy3
python violins.py

exit;

Finally, to run both the batch script and python, we type:

sbatch python.sh

This will output a job number. You will have two output files:

• fig1.jpeg

• slurm-JOBID.log

4.7. Python 115

ARC Documentation, Release 1.0

The slurm log contains any output you would have seen had you typed python violins.py at the command line.

4.7.7 Parallel Computing in Python

Coming soon-ish. In the meantime, an mpi4py example is provided as part of ARC’s examples repository.

4.8 PyTorch

4.8.1 Introduction

Pytorch, as described on their website is: “an open source machine learning framework that accelerates the path from
research prototyping to production deployment”.

4.8.2 Availability

PyTorch is not implicitly installed on ARC systems, but is readily installed via Conda, pip or source. To install via
Conda on TinkerCliffs or Infer, you should first get an interactive job on a GPU node (or CPU if that is where you will
compute), load Anaconda and then create the environment.

on TC for a100 nodes:
interact --account=<your research allocation> --partition=a100_normal_q -N 1 -n 12 --
→˓gres=gpu:1
module load Anaconda3/2020.11
module list ## make sure cuda is loaded if you are using the GPU
nvidia-smi ## make sure you see GPUs
conda create -n pytorch
source activate pytorch
conda install pytorch torchvision torchaudio matplotlib numpy -c pytorch

Warning: NOTE: GPU support for AI/ML codes can offer SIGNIFFICANT computational speed improvments.
Simply installing the defaults as per the docs may or may not result in code utilizing the GPUs. Test your code
with a small example prior to running your full dataset. You can ssh to the node your job is running on and use
nvidia-smi to see that your code is running on the GPU.

4.8.3 Interaction

You can run PyTorch code from Jupyter Notebooks or via the command line (interactive or scripts). Ideally, you will
prototype your code via Jupyter which is easily accessible from Open OnDemand (ood). If instead, you would prefer
to prototype your code via the command line, first get an interactive job as above in the install notes, then load the
required software, eg Anaconda.

116 Chapter 4. Software

https://github.com/AdvancedResearchComputing/examples/tree/master/mpi4py
https://pytorch.org

ARC Documentation, Release 1.0

4.8.4 Quick example from the pytorch.org site

The PyTorch tutorials are excellant. For brevity, we can run through the CIFAR10 example from the PyTorch docs:
https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#sphx-glr-beginner-blitz-cifar10-tutorial-py

Here is the example python script, you can run it manually or via python cifar10.py

cifar10.py
import libraries
import torch
import torchvision
import torchvision.transforms as transforms

get data and set class labels
transform = transforms.Compose(

[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

batch_size = 4

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)

trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)

testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

plot some dat for fun, if doing this via a script, you need to push this to a file or␣
→˓comment out
import matplotlib.pyplot as plt
import numpy as np

functions to show an image

def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()

get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()

show images
imshow(torchvision.utils.make_grid(images))

(continues on next page)

4.8. PyTorch 117

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#sphx-glr-beginner-blitz-cifar10-tutorial-py

ARC Documentation, Release 1.0

(continued from previous page)

print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(batch_size)))

setup the NN
import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
def __init__(self):

super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x

net = Net()

define the loss function
import torch.optim as optim

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

train the network

for epoch in range(2): # loop over the dataset multiple times

running_loss = 0.0
for i, data in enumerate(trainloader, 0):

get the inputs; data is a list of [inputs, labels]
inputs, labels = data

zero the parameter gradients
optimizer.zero_grad()

forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()

(continues on next page)

118 Chapter 4. Software

ARC Documentation, Release 1.0

(continued from previous page)

optimizer.step()

print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches

print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))

running_loss = 0.0

print('Finished Training')

save it if you want to keep it
PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)

test it if that's your thing
dataiter = iter(testloader)
images, labels = dataiter.next()

print images
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))

4.8.5 Parallel Computing in Python

Coming soon-ish

4.8.6 Command line running of Python

Coming soon-ish

module load Anaconda3/2020.11
conda create -n mypython3 python=3
source activate mypython3

4.8. PyTorch 119

ARC Documentation, Release 1.0

4.8.7 Managing environments

https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html

Full Example

4.9 R

4.9.1 Introduction

R is free software for statistical computing and graphics.

4.9.2 Availability

R is available on all our systems. We are moving towards making R available via containers, specifically Singularitiy.
Our containers are built using Docker and converted to Singularity. Several versions of R are available. Each R version
is usually available with different package subsets for specific domain usages:

• ood-rstudio-basic

• ood-rstudio-bio

• ood-rstudio-geospatial

• ood-rstudio-keras

• ood-rstudio-qiime2

The Dockerfiles are available on GitHub searching for “ood-rstudio” and the images available on DockerHub searching
for “rsettlag/ood-rstudio”. The easiest way to see what libraries are installed in the container is to simply start the
Rstudio app via Open Ondemand.

If you need additional packages or R versions, please open an issue on GitHub.

4.9.3 Interface

There are two types of environments in which the R application can be used on ARC resources:

• Graphical interface via Rstudio OnDemand

• Command-line interface. You can also start R from the command line through the Singularity container.

Note: larger computations should be submitted as jobs, via a traditional job submission script.

120 Chapter 4. Software

https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://www.r-project.org/
https://singularity.hpcng.org/
https://www.docker.com
https://github.com/rsettlage
https://hub.docker.com

ARC Documentation, Release 1.0

4.9.4 R from the command line

To run R from the command line, we need to load the container software and then jump into the container to see R.
From TinkerCliffs, this would look like so:

module load containers/singularity/3.7.1
singularity exec -bind=/work,/projects \

/projects/arcsingularity/ood-rstudio141717-bio_4.1.0.sif R

Note: both /work and /projects are mounted into the container (via bind) so that we can access files outside the
container from those storage locations.

4.9.5 R startup, .Renviron and adding packages

R startup is a bit complicated. There is a really nice writeup here:
https://rviews.rstudio.com/2017/04/19/r-for-enterprise-understanding-r-s-startup/

The R in the container is expecting a startup file at ~/.Renvron.OOD. This file needs to have the location of the user
packages, for example:

R_LIBS_USER=~/R/OOD/Ubuntu-20.04-4.1.1

This directory must exist prior to starting R. If you use the OnDemand Rstudio, it will be automatically created on your
first start of Rstudio.

To install packages from Rstudio, simply do:

install.packages(“package of interest”)

Warning: When using R rom the command line, you need to reverse the search path of the installed packages
prior to installing packages. Make sure the first path in .libPaths() is one you can write to:

> .libPaths()
> .libPaths(.libPaths()[3:1])
> install.packages("package of interest")

R from a Script

As we scale up our computing, we will often find the compute takes too long or we need to run many scripts (models)
to get our work done. When this happens, we need to turn to using R via a script. The R script needs to hands free, ie
no user action necessary in execution of the full script. To accomplish this on ARC, we actually need two scripts:

1. an R script with the actual R code we are needing to run

2. a shell script for submission to the cluster batch schedulers

The R script should load/generate the data, do the compute, and save the results. As an example, from a login node,
you can type:

sbatch run_R.sh

This will submit the script run_R.sh to the (slurm) scheduler. This script in turn, loads the singularity software for
running R and runs the R script, hp_mpg.R, via Rscript. Both scripts are shown below.

4.9. R 121

https://rviews.rstudio.com/2017/04/19/r-for-enterprise-understanding-r-s-startup/

ARC Documentation, Release 1.0

hp_mpg.R
R script for generating a plot of mpg vs hp
library(ggplot2)
attach(mtcars)
p <- ggplot(data=mtcars, aes(x=hp, y=mpg)) + geom_line()
ggsave(file="hp_mpg.pdf",p)

Given the R script, we still need a seperate script as the job submission script. This script should contain Slurm
directives detailing what compute resources are needed, loading of any required software, and finally running the
application of interest.

#!/bin/bash

run_R.sh
###
environment & variable setup
####### job customization
#SBATCH --job-name="mpg plot"
#SBATCH -N 1
#SBATCH -n 16
#SBATCH -t 1:00:00
#SBATCH -p normal_q
#SBATCH -A <your account> #### <------- change me
####### end of job customization
end of environment & variable setup
###
add modules on TC/Infer
module load containers/singularity/3.7.1
from DT/CA, use module load singularity
module list
#end of add modules
###
###print script to keep a record of what is done
cat hp_mpg.R
cat run_R.sh
###
echo start running R
note, on DT/CA, you should replace projects with groups

singularity exec --bind=/work,/projects \
/projects/arcsingularity/ood-rstudio141717-bio_4.1.0.sif Rscript hp_mpg.R

exit;

122 Chapter 4. Software

ARC Documentation, Release 1.0

4.9.6 Parallel Computing in R

There are multiple ways to afford parallelism from within R. Depending on how you parallelize, you may need to alter
your SLURM job request.

parallel package

bootstrap example with mcapply

parallel_mcapply.R
library(parallel)

make some data
x <- matrix(c(rep(1,100),runif(100),runif(100,max=10)),ncol=3,byrow=FALSE)
beta <- matrix(1:3,nrow=3)
y <- x %*% beta + rnorm(100)

f <- function(x_mat=x,y_mat=y,z){
boot_coef <- sample(1:100,size=100,replace=TRUE);
results<-lm(y_mat[boot_coef]~0+x_mat[boot_coef,])$coefficients
names(results)<-c("beta0","beta1","beta2")
return(results)

}

#numCores <- detectCores()
numCores <- parallelly::availableCores()
numreps <- 10000
results <- rep(0,numreps) ## preallocate to get compute timing

cat("setting cores to: ",numCores,sep="\n")

cat("using lapply \n")
system.time(
results <- lapply(1:numreps,function(i) f())

)
rowMeans(sapply(results,"["))

cat("using mcapply \n")
system.time(
results <- mclapply(1:numreps,function(i) f(), mc.cores = numCores)

)
rowMeans(sapply(results,"["))

To use:

interact -N 1 -c 12 --partition=intel_q --time=5:00:00 --account=<your account>
module load containers/singularity
singularity exec /projects/arcsingularity/ood-rstudio141717-bio_4.1.0.sif Rscript␣
→˓parallel_mcapply.R

Note: a) specify the number of cores via SLURM --cores-per-task, NOT --ntasks.
b) detectCores() does not work as intended. detectCores() will query to get the cores on the node, not the cores in the

4.9. R 123

ARC Documentation, Release 1.0

job. Use availableCores() from the parallelly package instead.

doParallel example

parallel_doparallel.R
library(foreach)
library(doParallel)
numCores <- parallelly::availableCores()

registerDoParallel(numCores) # use multicore, set to the number of our cores
foreach (i=1:100, .combine=c) %dopar% {
tanh(i)

}

stopImplicitCluster() ## clean up

WIP:

Danger: proceed with caution below, you may encounter bumps. . .

MPI

Still in testing, but, we are using a bind option to get OpenMPI into the container. See here for a discussion. From
there, we need to install Rmpi.

$ module load OpenMPI/4.1.1-GCC-10.3.0 containers/singularity
$ export SINGULARITYENV_LD_LIBRARY_PATH=$LD_LIBRARY_PATH
$ singularity exec --writable-tmpfs

--bind=$TMPFS:/tmp,/usr/include/bits,/apps,/cm,/usr/bin/ssh \
--bind=/home/rsettlag/.Renviron.OOD:/usr/local/lib/R/etc/Renviron.site \
/projects/arcsingularity/ood-rstudio141717-bio_4.1.0.sif bash

singularity> R CMD INSTALL Rmpi_0.6-7.tar.gz --configure-args=--with-mpi=/apps/easybuild/
→˓software/tinkercliffs-cascade_lake/OpenMPI/4.1.1-GCC-10.3.0 --no-test-load

To use Rmpi, we need to:

a) make sure the configuration of the job matches what we desire in terms of processes and cores
b) use mpirun to launch R and subsequently Rmpi

current working example:
export PMIX_MCA_gds=hash ## was supposedly fixed in OMPI 4.0.3+, but here we are in 4.1.
→˓1...

mpirun -np 8 singularity exec --writable-tmpfs --bind=$TMPFS:/tmp,/usr/include/bits,/
→˓apps,/cm,/usr/bin/ssh /projects/arcsingularity/ood-rstudio141717-bio_4.1.0.sif /home/
→˓rsettlag/examples/mpitest

prepping for some of the R errors:
mpirun -np 8 --mca mpi_warn_on_fork 0 --mca btl_openib_allow_ib 1 --mca rmaps_base_
→˓inherit 1 singularity exec --writable-tmpfs --bind=$TMPFS:/tmp,/usr/include/bits,/apps,

(continues on next page)

124 Chapter 4. Software

https://sylabs.io/guides/3.7/user-guide/mpi.html#bind-model

ARC Documentation, Release 1.0

(continued from previous page)

→˓/cm,/usr/bin/ssh,/home/rsettlag/.Renviron.OOD:/usr/local/lib/R/etc/Renviron.site /
→˓projects/arcsingularity/ood-rstudio141717-bio_4.1.0.sif /home/rsettlag/examples/mpitest

Where mpitest.c is:

mpitest.c
#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char **argv) {
int rc;
int size;
int myrank;

rc = MPI_Init (&argc, &argv);
if (rc != MPI_SUCCESS) {

fprintf (stderr, "MPI_Init() failed");
return EXIT_FAILURE;

}

rc = MPI_Comm_size (MPI_COMM_WORLD, &size);
if (rc != MPI_SUCCESS) {

fprintf (stderr, "MPI_Comm_size() failed");
goto exit_with_error;

}

rc = MPI_Comm_rank (MPI_COMM_WORLD, &myrank);
if (rc != MPI_SUCCESS) {

fprintf (stderr, "MPI_Comm_rank() failed");
goto exit_with_error;

}

fprintf (stdout, "Hello, I am rank %d/%d\n", myrank, size);

MPI_Finalize();

return EXIT_SUCCESS;

exit_with_error:
MPI_Finalize();
return EXIT_FAILURE;

}

compiled from INSIDE the container with:

mpicc -o mpitest mpitest.c

Example coming soon. . .

Current non-working Rmpi example – non-working IN a container. . .

mpi_r.R
Load the R MPI package if it is not already loaded.

(continues on next page)

4.9. R 125

ARC Documentation, Release 1.0

(continued from previous page)

if (!is.loaded("mpi_initialize")) {
library("Rmpi")
}
print(mpi.universe.size())
ns <- mpi.universe.size() - 1
mpi.spawn.Rslaves(nslaves=ns)
#
In case R exits unexpectedly, have it automatically clean up
resources taken up by Rmpi (slaves, memory, etc...)
.Last <- function(){
if (is.loaded("mpi_initialize")){
if (mpi.comm.size(1) > 0){
print("Please use mpi.close.Rslaves() to close slaves.")
mpi.close.Rslaves()
}
print("Please use mpi.quit() to quit R")
.Call("mpi_finalize")
}
}
Tell all slaves to return a message identifying themselves
mpi.remote.exec(paste("I am",mpi.comm.rank(),"of",mpi.comm.size(),system("hostname",
→˓intern=T)))
Test computations
x <- 5
x <- mpi.remote.exec(rnorm, x)
length(x)
x
Tell all slaves to close down, and exit the program
mpi.close.Rslaves()

4.10 Singularity

4.10.1 Introduction

Singularity is free software for containerizing applications.

126 Chapter 4. Software

ARC Documentation, Release 1.0

4.10.2 Availability

Singularity is available across all our systems.

4.10.3 Usage

Using containers on our systems amounts to loading the software and starting the image. On Tinkercliffs/Infer, to run
a Jupyter container with Julia:

module load containers/singularity
singularity exec --bind=/work,/projects,`pwd`:/opt/julia/logs \

/projects/arcsingularity/AMD/ood-jupyter-datascience_tcamd_1Dec2020.sif julia

The above commands load the singularity software using our module system, then starts Julia wihtin the container. To
make data from our main storage locations available within the container, we use the --bind command. Additionally,
Julia wants to write logs to /opt/julia/logs/. Since the container is not writable, we need to bind a mountable
location to that container location as given by pwd:/opt/julia/logs. This makes the current location available IN the
container as /opt/julia/logs/ and allows Julia to create a log file.

4.10.4 Container building workflow

Because Singularity can build from DockerHub and the public help via Google searches is vastly greater when creating
Docker images, our general recommendation is to take advantage of this.

Our workflow is to:

1. create a docker image

2. push docker image to dockerhub

3. singularity build image.sif docker://<docker user>/image:tag

4.11 STATA

4.11.1 Introduction

Stata is free software for statistical computing and graphics.

4.11.2 Availability

STATA is available on Dragonstooth and Cascades systems. Currently, only STATA 14.0 is available. This is a 16-core
MP license.

4.11. STATA 127

https://www.stata.com/

ARC Documentation, Release 1.0

4.11.3 Interface

There are two types of environments in which the STATA application can be used on ARC resources:

• Graphical interface via OnDemand

• Command-line interface. You can also start STATA from the command line after loading the software module.

Note: larger command line computations should be submitted as jobs, via a traditional job submission.

4.11.4 STATA from the command line

To run STATA from the command line, we need to:

1. start a job (either interactive or in a script)

2. load the software module

3. start stata

From Dragonstooth for an interactive job, this would look like so:

interact -N 1 -n 16 --partition=normal_q --time=1:00:00 --account=<your account>
module load stata/14.0
stata-mp

The above lines should be typed from one of the Dragonstooth login nodes. Note, the interactive job request is looking
for 16-cores on a single node where <your account> should be replaced with a Slurm allocation you have access to. If
you are unsure what accounts you have access to, go to ood.arc.vt.edu, go to the Tinkercliffs shell, type showusage to
get a summary of your accounts.

Full Script Example

To run STATA via a script, you need to create a do file and execute that in a hands free mode, ie no user input.

As an example of a do file named cool_stata_analysis.do which assumes you have a data file named filename
with variables included as shown:

* cool_stata_analysis.do
clear
set mem 200m
use filename
log using mylog,text replace
ge lsales3 = log(sales3)
xi:boxcox sales3 pr* i.store
regress lsales3 pr* i.store
log close

Now, to run this file in a script, we need to create a submission script:

#!/bin/bash

STATA.sh

(continues on next page)

128 Chapter 4. Software

ARC Documentation, Release 1.0

(continued from previous page)

###
environment & variable setup

####### job customization
#SBATCH -N 1
#SBATCH -n 16
#SBATCH -t 1:00:00
#SBATCH -p normal_q
#SBATCH -A <your account>
####### end of job customization
end of environment & variable setup
###
add modules:
module load stata/14.0
module list
#end of add modules
###
###print script to keep a record of what is done
cat STATA.sh
echo "stata code"
cat cool_stata_analysis.do
###
echo start running stata
stata -b cool_stata_analysis.do

exit;

Finally, to run both the batch script and stata, we type:

sbatch STATA.sh

This will output a job number. You will have two output files:

• cool_stata_analysis.log

• slurm-JOBID.log

The first, you already know about. The second contains any output you would have seen had you typed stata -b
cool_stata_analysis.do at the command line.

4.12 Tensorflow

4.12.1 Introduction

Tensorflow is free software for AI/ML applications.

4.12. Tensorflow 129

ARC Documentation, Release 1.0

4.12.2 Availability

4.12.3 Interface

4.12.4 Parallel Computing in Python

Coming soon-ish

4.12.5 Command line running of Python

Coming soon-ish

module load Anaconda3/2020.11
conda create -n mypython3 python=3
source activate mypython3

4.12.6 Managing environments

https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html

Full Example

130 Chapter 4. Software

https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html

CHAPTER

FIVE

USAGE

Contents:

5.1 Allocations

5.1.1 Introduction

ARC’s primary mission is to facilitate breakthrough research at Virginia Tech. To this end, ARC uses an allocation
system to ensure that system time is distributed in a manner appropriate to research needs while allowing faculty
members and PIs the flexibility to ensure that the time allocated to a given project is managed (e.g., among graduate
students) so as to maximum productivity. An allocation is a system time account requested and managed by a single
person (e.g., a project PI). Many users (e.g., Co-PIs or graduate students) can then be granted access to charge against
a single allocation.

Note: Allocation applications can also include requests for other resources (e.g., additional storage) required to make
a project successful.

5.1.2 Allocation Types

There are two types of allocations, which differ somewhat in how they are awarded:

Research Allocations are provided for research projects and usually managed by the project’s Principal Investigator
(PI) (see Eligibility for Research Allocations, below). They are typically granted for a single year and can be renewed
annually for the length of the project. Multi-year research allocations, such as for inclusion in a proposal submission,
may be granted through negotiation with ARC. Instructional Allocations support academic classes and are managed
by the faculty member or instructor responsible for the course. Instructional allocations are typically smaller, available
for shorter time periods (e.g., for the duration of the associated course), and may be limited to a select set of systems.
Eligibility for Research Allocations

Funds on ARC’s systems are intended to ensure that users have the computing resources required to complete their
research while also ensuring that no single user or group of users dominates the systems to the detriment of others. As
such, allocations are awarded on a project-by-project basis and intended to be managed by the individual responsible
for overseeing the research.

In order to manage a research project or allocation on ARC’s systems, a user must fall into one of the following cate-
gories:

Be a current faculty member or post-doctoral researcher at Virginia Tech, OR Be an employee of Virginia Tech and
the Principal Investigator (PI) for a research computing-related project, OR Be an employee of Virginia Tech and the
Co-PI for a research computing-related project led by a non-Virginia Tech PI Adjunct professors must provide a letter
from their department chair, indicating that they are qualified to lead an internal research project, before their project
and allocation requests can be approved.

131

ARC Documentation, Release 1.0

Undergraduate and graduate students are not eligible to apply directly for projects and allocations, but must instead
work under the sponsorship of a qualified researcher.

5.1.3 Student eligibility

Undergraduate and graduate students should ask their advisor or research project PI to submit an allocation request.
Once the request has been granted, they can be added to the project and submit jobs.

5.2 Frequently Asked Questions

5.2.1 Why can’t I log in?

Log in problems can occur for a number of reasons. If you cannot log into one of ARC’s systems, please check the
following:

1. Is your PID password expired? Try logging into onecampus.vt.edu. If you cannot log in there, then your PID
password has likely expired and needs to be changed. (Contact 4Help for help with this issue.)

2. Are you on-campus? If you are not on-campus, you will need to connect to the Virginia Tech VPN in order to
access ARC’s systems.

3. Is the hostname correct? Please check the name of the login node(s) for the system you are trying to ac-
cess. For example, for login to TinkerCliffs, the hostname is not tinkercliffs.arc.vt.edu but rather
tinkercliffs1.arc.vt.edu or tinkercliffs2.arc.vt.edu.

4. Do you have an account? You must request an account on a system before you can log in.

5. Is there a maintenance outage? ARC systems are occassionally taken offline for maintenance purposes. Users
are typically notified via email well ahead of maintenance outages.

If you have checked all of the above and are still not sure why you cannot log in, please submit a help ticket.

5.2.2 How much does it cost to use ARC’s systems?

ARC’s systems are free to use, within limits. This means that Virginia Tech researchers can simply request an account
to get access and run. Usage beyond fairly restrictive personal limits does require an approved allocation requested by
a faculty member or project principal investigator; this requires some basic information to be provided, but getting an
allocation does not require monetary payment of any kind. Researchers who need access to more resources beyond
what we provide for free or who would like to purchase dedicated hardware can do so through our Cost Center or
Investment programs. More information on how to get started with ARC is here.

5.2.3 Why is my job not starting?

Typically the squeue command will provide the reason a job isn’t starting. This shows information about all pending
or queued jobs, so it may be helpful to query for only your own jobs squeue -u <your pid> or only for a particular
job squeue -j <jobid>. For example:

[brownm12@calogin2 ~]$ squeue -u brownm12
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
310926 normal_q bash brownm12 PD 0:00 64 (PartitionNodeLimit)

132 Chapter 5. Usage

http://onecampus.vt.edu
https://4help.vt.edu/
https://vt4help.service-now.com/sp?id=kb_article&sys_id=d5496fca0f8b4200d3254b9ce1050ee5
https://arc.vt.edu/account
https://arc.vt.edu/help

ARC Documentation, Release 1.0

This job has been submitted with a request for 64 nodes which exceeds the per-job limit on the normal_q partition.

Other common reasons:

Reason Meaning
Priority or
Resources

These two are the most common reasons given for a job being pending (PD). They simply
mean that the job is waiting in the queue for resources to become available.

QOSMaxJobsPerUserLimitQOS applied to the partition restricts users to a maximum number of concurrent running
jobs. As your jobs complete, queued jobs will be allowed to start.

QOSMaxCpuMinutesPerJobLimitQOS applied to the partition restricts jobs to a maximum number of CPU-minutes. To run,
the job must request either fewer CPUs or less time.

PartitionTimeLimitRequested timelimit exceeds the maximum for the partition
AssocGrpBillingMinutesThe allocation to which your submitted the job has exceeded its available resources (e.g., in

the free tier)

5.2.4 Why can’t I run on the login node?

One of the most common beginner mistakes on compute clusters is to log into the cluster and then immediately start
running a computation. When you log into a cluster, you land on a login node. Login nodes are individual computers
that represent a very small segment of the overall cluster and, crucially, are shared by many of the users who are logged
into the cluster at a given time. So while basic tasks (editing files, checking jobs, perhaps making simple plots or
compiling software) are fine to do on the login nodes, when you run a computationally-intensive task on the login
node, you are adversely impacting other users (since the node is shared) while getting worse performance for yourself
(by not using the bulk of the cluster). You should therefore submit your computationally intensive tasks to compute
nodes by submitting a job to the scheduler. See here for documentation about job submission; we also have a video
tutorial that will walk you through the process in a few minutes. Users who run problematic programs on the login
node can have those tasks killed without warning. Users who repeatedly violate this policy arc subject to having their
ARC account suspended.

5.2.5 When will my job start?

Adding the --start flag to squeue will provide the system’s best guess as to when the job will start, or give a reason
for why the job will not start in the NODELIST(REASON) column. If no estimated start time is provided, please see Why
is my job not starting? for more information.

5.2.6 How do I submit an interactive job?

A user can request an interactive session on a compute node (e.g., for debugging purposes), using interact, a wrapper
on srun. By default, this script will request one core (with one GPU on Infer) for one hour on a default partition (often
interactive_q or dev_q, depending on the cluster). An allocation should be provided:

interact -A yourallocation

The request can be customized with standard job submission flags used by srun or sbatch. Examples include:

• Request two hours:

interact -A yourallocation -t 2:00:00

• Request two hours on the normal_q partition:

5.2. Frequently Asked Questions 133

https://github.com/AdvancedResearchComputing/useful_scripts/blob/main/bin/interact
https://github.com/AdvancedResearchComputing/useful_scripts/blob/main/bin/interact

ARC Documentation, Release 1.0

interact -A yourallocation -t 2:00:00 -p normal_q

• Request two hours on one core and one GPU on Infer’s t4_dev_q:

interact -A yourallocation -t 2:00:00 -p t4_dev_q -n 1 --gres=gpu:1

• Get additional details on what interact is doing:

interact -A yourallocation --verbose

(The flags for requesting resources may vary from system to system; please see the documentation for the system that
you want to use.)

Once the job has been submitted, the system may print out some information about the defaults that interact has
chosen. Once the resources requested are available, you will then get a prompt on a compute node. You can issue
commands on the compute node as you would on the login node or any other system. To exit the interactive session,
simply type exit.

Note: As with any other job, if all resources on the requested queue are being used by running jobs at the time an
interactive job is submitted, it may take some time for the interactive job to start.

5.2.7 How do I change a job’s stack size limit?

If your MPI code needs higher stack sizes then you may specify the stack size in the command that you specify to MPI.
For example:

mpirun -bind-to-core -np $SLURM_NTASKS /bin/bash -c ulimit -s unlimited; ./your_program

5.2.8 How do I check my job’s resource usage?

The jobload command will report core and memory usage for each node of a given job. Example output is:

[jkrometi@tinkercliffs2 04/06 09:21:13 ~]$ jobload 129722
Basic job information:

JOBID PARTITION NAME ACCOUNT USER STATE TIME ␣
→˓TIME_LIMIT NODES NODELIST(REASON)

129722 normal_q tinkercliffs someaccount someuser RUNNING ␣
→˓43:43 8:00:00 2 tc[082-083]

Job is running on nodes: tc082 tc083

Node utilization is:
node cores load pct mem used pct

tc082 128 128.0 100.0 251.7GB 182.1GB 72.3
tc083 128 47.9 37.4 251.7GB 187.2GB 74.3

This TinkerCliffs job is using all 128 cores on one node but only 48 cores on the second node. In this case, we know
that the job has requested two full nodes, so some optimization may be in order to ensure that they’re using all of
the requested resources. The job is, however, using 70-75% memory on both nodes, so the resource request may be
intentional. If more information is required about a given node, the command scontrol show node tc083 can
provide it.

134 Chapter 5. Usage

ARC Documentation, Release 1.0

5.2.9 How can I monitor GPU utilization during my job?

The nvidia-smi command with no other options diplays this information but prints to standard out and only once.
But there are many options which can be added to tap into lots of extended functionality of this tool.

Add a line like this to a batch script prior to starting training:

nvidia-smi --query-gpu=timestamp,name,pci.bus_id,driver_version,temperature.gpu,
→˓utilization.gpu,utilization.memory,memory.total,memory.free,memy.used --format=csv -l␣
→˓3 > $SLURM_JOBID.gpu.log &

The & causes the query to run in the background and keep running until the job ends or this process is manually killed.
The > $SLURM_JOBID.gpu.log causes the output to be redirected to a file whose name is the numerical job id followed
by .gpu.log.

The -l 5 is for the repeating polling interval. From the nvidia-smi manual:

-l SEC, --loop=SEC
Continuously report query data at the specified interval, rather than the default of␣

→˓just once.

For details on query options: nvidia-smi --help-query-gpu

Output from nvidia-smi run as above looks like this:

2021/10/29 16:36:30.047, A100-SXM-80GB, 00000000:CB:00.0, 460.73.01, 41, 0 %, 0 %, 81251␣
→˓MiB, 81248 MiB, 3 MiB
2021/10/29 16:36:33.048, A100-SXM-80GB, 00000000:07:00.0, 460.73.01, 58, 16 %, 4 %,␣
→˓81251 MiB, 66511 MiB, 14740 MiB
2021/10/29 16:36:33.053, A100-SXM-80GB, 00000000:CB:00.0, 460.73.01, 41, 0 %, 0 %, 81251␣
→˓MiB, 81248 MiB, 3 MiB
2021/10/29 16:36:36.054, A100-SXM-80GB, 00000000:07:00.0, 460.73.01, 65, 98 %, 15 %,␣
→˓81251 MiB, 66571 MiB, 14680 MiB
2021/10/29 16:36:36.055, A100-SXM-80GB, 00000000:CB:00.0, 460.73.01, 41, 0 %, 0 %, 81251␣
→˓MiB, 81248 MiB, 3 MiB
2021/10/29 16:36:39.055, A100-SXM-80GB, 00000000:07:00.0, 460.73.01, 67, 100 %, 36 %,␣
→˓81251 MiB, 66571 MiB, 14680 MiB
2021/10/29 16:36:39.056, A100-SXM-80GB, 00000000:CB:00.0, 460.73.01, 41, 0 %, 0 %, 81251␣
→˓MiB, 81248 MiB, 3 MiB
2021/10/29 16:36:42.057, A100-SXM-80GB, 00000000:07:00.0, 460.73.01, 54, 10 %, 2 %,␣
→˓81251 MiB, 66571 MiB, 14680 MiB
2021/10/29 16:36:42.058, A100-SXM-80GB, 00000000:CB:00.0, 460.73.01, 41, 0 %, 0 %, 81251␣
→˓MiB, 81248 MiB, 3 MiB
2021/10/29 16:36:45.059, A100-SXM-80GB, 00000000:07:00.0, 460.73.01, 54, 0 %, 0 %, 81251␣
→˓MiB, 66571 MiB, 14680 MiB
2021/10/29 16:36:45.060, A100-SXM-80GB, 00000000:CB:00.0, 460.73.01, 41, 0 %, 0 %, 81251␣
→˓MiB, 81248 MiB, 3 MiB
2021/10/29 16:36:48.060, A100-SXM-80GB, 00000000:07:00.0, 460.73.01, 68, 100 %, 26 %,␣
→˓81251 MiB, 66571 MiB, 14680 MiB
2021/10/29 16:36:48.061, A100-SXM-80GB, 00000000:CB:00.0, 460.73.01, 41, 0 %, 0 %, 81251␣
→˓MiB, 81248 MiB, 3 MiB
2021/10/29 16:36:51.062, A100-SXM-80GB, 00000000:07:00.0, 460.73.01, 52, 20 %, 3 %,␣
→˓81251 MiB, 66571 MiB, 14680 MiB
2021/10/29 16:36:51.063, A100-SXM-80GB, 00000000:CB:00.0, 460.73.01, 41, 0 %, 0 %, 81251␣
→˓MiB, 81248 MiB, 3 MiB

(continues on next page)

5.2. Frequently Asked Questions 135

ARC Documentation, Release 1.0

(continued from previous page)

2021/10/29 16:36:54.064, A100-SXM-80GB, 00000000:07:00.0, 460.73.01, 52, 0 %, 0 %, 81251␣
→˓MiB, 66571 MiB, 14680 MiB

You can monitor the utilization information in near-real-time from a login node by navigating to the output directory
for the job and using tail to follow the output with tail -f <jobid>.gpu.log and the CSV formatting makes it
easy to analyze or generate graphics with other tools such as python, R, or matlab.

5.2.10 I need a software package for my research. Can you install it for me?

At any given time, ARC staff is trying to balance many high-priority tasks to improve, refine, or augment our systems.
Unfortunately, this means that we typically cannot install all or even most of the software that our users require to do
their research. As a result, the set of applications on each system does not typically change unless a new software
package is requested by a large number of users. However, users are welcome to install software that they require for
their research in their Home directory. This generally involves copying the source code into one of your personal or
group storage locations and then following the directions provided with the software to build that source code into
an executable. If the vendor does not provide source code and just provides an executable (which is true of some
commercial software packages), then you need to select the right executable for the system hardware and copy that into
your home directory. ARC provides a script called setup_app that helps automate setup of directories and creation of
personal modules.

5.2.11 How can I add my own software installation to my module system?

The key is to create a modulefile for the software and make sure that it is in a location that can be found by MODULEPATH.
Starting on TinkerCliffs and later systems, ARC provides a script called setup_app that automates much of this pro-
cess. See also this video tutorial. Start by providing a software package and version, e.g.,

[jkrometi@tinkercliffs2 ~]$ setup_app julia 1.6.1-foss-2020b
Create directories /home/jkrometi/apps/tinkercliffs-rome/julia/1.6.1-foss-2020b and /
→˓home/jkrometi/easybuild/modules/tinkercliffs-rome/all/julia?

Enter y to let it proceed. The script will then set up the directory and the modulefile. It finishes by printing some
information about what you need to do to finish off the install:

Done. To finish your build:
1. Install your app in /home/jkrometi/apps/tinkercliffs-rome/julia/1.6.1-foss-2020b/
2. Edit the modulefile in /home/jkrometi/easybuild/modules/tinkercliffs-rome/all/julia/
→˓1.6.1-foss-2020b.lua

- Set or remove modules to load in the load() line
- Edit description and URL
- Check the variable names
- Edit paths (some packages don't have, e.g., an include/)

Note: You may need to refresh the cache, e.g.,
module --ignore_cache spider julia

to find the module the first time.

Note that setup_app also provides a --base flag that will allow installation somewhere other than the default location,
e.g.,

setup_app --base=/projects/myproject julia 1.6.1-foss-2020b

136 Chapter 5. Usage

https://video.vt.edu/media/Building+Custom+Software+Modules+Manually+on+ARC%27s+Resources/1_ylh24w9q

ARC Documentation, Release 1.0

5.2.12 What is the best way to make sure everyone in my group has the same access
to all the files in our shared directory?

The first step is to make sure the group id (GID) of all the files and directories are consistent and match the group id of
the shared directory. The chgrp command does this but only the owner of a file can change its gid. So each member
of the group needs to find files which they own and chgrp them to correct the GID and also chmod them to ensure
correct mode. Here is a template command sequence to do that:

Show numeric group id of current user. This is the GID which will be used in the next␣
→˓step to identify files
id -g
Find files in the shared directory matching current user's GID and execute a chgrp on␣
→˓them
find /projects/MYGROUPNAME -gid `id -g` -exec chgrp arc.MYGROUPNAME {} \;
Find files in the shared directory matching current user's UID and execute a chmod on␣
→˓them to all group members to have read access
find /projects/MYGROUPNAME -uid `id -u` -exec chmod g+r arc.MYGROUPNAME {} \;

Any member of the group who has files in the shared directory with their GID will need to run that command. Group
ownership of files in the shared directories is inherited for newly created files and for files transferred with rsync with
the correct options, but scp generally does not respect the parent gid, unfortunately.

5.2.13 What does a “Disk quota exceeded” error mean?

This typically means that one of your storage locations has exceeded the maximum allowable size. You will need to
reduce the space consumed in order to run jobs successfully again. Note that the quota system for Project and Work
storage on TinkerCliffs and Infer can be counterintuitive in some ways, so if you are getting a “quota exceeded” error
on those file systems and think you should not be, see this description for details and fixes.

5.2.14 What does a module: command not found error mean?

If your job returns an error that looks like

/cm/local/apps/slurm/var/spool/job275621/slurm_script: line 11: module: command not found

then you are likely hitting a race condition during job startup. We are occassionally seeing this issue on TinkerCliffs
but have been unable to identify a cause or tie it to specific nodes. When resubmitted, these jobs typically run without
incident. However, you should be able to ensure that your job will not fail with this error by adding the following lines
to your submission script before any commands (e.g., module commands) are run:

if [-z ${HOME+x}]; then
export HOME=$(echo ~)
source /etc/profile
source /etc/bashrc
source $HOME/.bashrc

fi

These lines will manually setup the environment should Slurm fail to do so.

5.2. Frequently Asked Questions 137

ARC Documentation, Release 1.0

5.2.15 What does a Detected 1 oom-kill event(s) error mean?

If your job fails with an error like

slurmstepd: error: Detected 1 oom-kill event(s)

then your job triggered Linux’s Out of Memory Killer process. This means that it tried to use more memory than
allocated to the job. The seff command (Slurm job efficiency) also provides some information on resource utilization:

[user@infer1 ~]$ seff 1447
Job ID: 1447
Cluster: infer
User/Group: someuser/someuser
State: OUT_OF_MEMORY (exit code 0)
Nodes: 2
Cores per node: 32
CPU Utilized: 02:43:59
CPU Efficiency: 1.56% of 7-07:21:36 core-walltime
Job Wall-clock time: 02:44:24
Memory Utilized: 174.83 GB
Memory Efficiency: 49.11% of 356.00 GB

If your job is requesting a subset of a node, you will need to request more cores (which will give you more memory). If
you are already requesting a full node, you will need to either edit your code or problem to use less memory or submit
to different hardware that has more memory (e.g., the high memory nodes on TinkerCliffs) – check the details for each
cluster to find an option that might work for you.

5.2.16 Why are basic commands like sbatch not recognized?

Starting with Tinkercliffs and Infer, ARC provides a default set of modules that are automatically loaded when you log
in. If basic commands like sbatch are not recognized, it is often because these default modules have been removed
(e.g., via module purge). Please run module reset and see if that solves your problem.

5.2.17 How do I add a user to an allocation?

To add a user to an existing allocation, follow these steps:

1. Go to ColdFront. (You may be prompted for a password.)

2. You will see a list of your Projects. Click on the one you want to modify.

3. Scroll down to Users and select Add Users.

4. Under Search String enter the user’s PID (or a list of PIDs) and click Search.

5. Scroll down, select the user whom you want to add, and click Add Selected Users to Project.

6. The page will refresh and the user’s PID should be included in the Users table. They are now added to the project
and its associated allocations.

138 Chapter 5. Usage

https://coldfront.arc.vt.edu/

ARC Documentation, Release 1.0

5.2.18 How do I attach to my process for debugging?

Short Answer: Attaching to a process for debugging no longer requires any special steps on ARC resources.

Longer Answer: Debuggers like gdb make software development much more efficient. Attaching to a process for
debugging requires that the targeted process and the user’s current process be in the same group. When ARC used
Moab and Torque for scheduling and resource management, processes launched by the scheduler were started under a
group other than the user’s group. Special steps were then required to switch groups before trying to attach with gdb.
However, the Slurm scheduler now used by ARC launches processes under the user’s group, so these steps are no longer
required. You may simply ssh to the compute node where the process is running, look up the process ID (e.g., with
top or ps), and then attach to it.

5.2.19 How can I submit a job that depends on the completion of another job?

Sometimes it may be useful to split one large computation into multiple jobs (e.g. due to queue limits), but submit
those jobs all at once. Jobs can be made dependent on each other using the --dependency=after:job_id flag to
sbatch. Additional dependency options can be found in the documentation for sbatch. For example, here we submit
three jobs, each of which depends on the preceding one:

[johndoe@tinkercliffs2 ~]$ sbatch test.sh
Submitted batch job 126448
[johndoe@tinkercliffs2 ~]$ sbatch --dependency=after:126448 test.sh
Submitted batch job 126449
[johndoe@tinkercliffs2 ~]$ sbatch --dependency=after:126449 test.sh
Submitted batch job 126450

The first job starts right away, but the second doesn’t start until the first one finishes and the third job doesn’t start until
the second one finishes. This allows the user to split their job up into multiple pieces, submit them all right away, and
then just monitor them as they run one after the other to completion.

5.2.20 How can I run multiple serial tasks inside one job?

Users with serial (sequential) programs may want to package multiple serial tasks into a single job submitted to the
scheduler. This can be done with third-party tools (gnu parallel is a good one) or using a loop within the job submission
script. (A similar structure can be used to run multiple short, parallel tasks inside a job.) The basic structure is to loop
through the number of tasks using while or for, start the task in the background using the & operator, and then use the
wait command to wait for the tasks to finish:

Define variables
numtasks=16
np=1
Loop through numtasks tasks
while [$np -le $numtasks]
do
Run the task in the background with input and output depending on the variable np
./a.out $np > $np.out &

Increment task counter
np=$((np+1))

done

Wait for all of the tasks to finish
wait

5.2. Frequently Asked Questions 139

https://slurm.schedmd.com/sbatch.html
https://www.gnu.org/software/parallel/parallel_tutorial.html

ARC Documentation, Release 1.0

Please note that the above structure will only work within a single node. To ensure that the same program (with the
same inputs) isn’t being run multiple times, users should make sure that the loop variable (np, above) is used to specify
input files or parameters.

5.2.21 How can I run multiple short, parallel tasks inside one job?

Sometimes users have a parallel application that runs quickly, but that they need to run many times. In this case, it may
be useful to package multiple parallel runs into a single job. This can be done using a loop within the job submission
script. An example structure:

Specify the list of tasks
tasklist=task1 task2 task3

Loop through the tasks
for tsk in $tasklist; do
run the task $tsk
mpirun -np $SLURM_NTASKS ./a.out $tsk

done

To ensure that the same program (with the same inputs) isn’t being run multiple times, users should make sure that the
loop variable (tsk, above) is used to specify input files or parameters. Note that, unlike when running multiple serial
tasks at once, in this case each task will not start until the previous one has finished.

5.3 Software Modules

ARC uses the lmod environment modules system to enable access to centrally-installed (ARC-maintained) scientific
software packages. This provides for the dynamic modification of a user’s environment for an application or set of
applications, enabling streamlined management of software versions and dependencies.

The modules on ARC’s systems fall into two categories depending on when the cluster was deployed:

• EasyBuild: ARC systems deployed in 2020 or later (TinkerCliffs and Infer) mostly rely on EasyBuild for module
deployment.

• Hierarchical: ARC systems deployed prior to 2019 use a hierarchical module structure.

These two systems are described in the following sections.

5.3.1 EasyBuild

Newer (2020 and later) ARC clusters use a module system mostly built around EasyBuild, a software build and instal-
lation framework that allows you to manage (scientific) software on High Performance Computing (HPC) systems in
an efficient way. EasyBuild is maintained by a broad user community and makes it easier for ARC to provide stable,
performant, and updated scientific software. It also makes it trivial in some cases for users to install their own versions
of packages if they so desire.

140 Chapter 5. Usage

https://www.tacc.utexas.edu/research-development/tacc-projects/lmod
https://easybuild.io/
https://easybuild.readthedocs.io

ARC Documentation, Release 1.0

Toolchains

EasyBuild is built around toolchains, which describe the sequence of dependencies, such as compiler, linear algebra
library, and MPI implementation, used to build packages. There are two main ones:

• foss (“Free Open Source Software”): GCC compilers, OpenBLAS for linear algebra, OpenMPI for MPI, etc

• intel: Intel compilers, Intel MKL for linear algebra, Intel MPI

However, we have upon request supported others, such as:

• iomkl: Intel compilers, Intel MKL for linear algebra, and OpenMPI for MPI

• gomkl: GCC compilers, Intel MKL for linear algebra, and OpenMPI for MPI

So please reach out if the toolchains that we provide are not what you need.

Toolchains are typically updated twice per year (a and b versions) and we try to stay up-to-date with those updates.

As an example, the modules active after loading the foss/2020b toolchain are (note that the first few modules in the
list are defaults provided by ARC):

[arcuser@tinkercliffs2 ~]$ module reset; module load foss/2020b; module list
Resetting modules to system default

Currently Loaded Modules:
1) shared 8) useful_scripts 15) XZ/5.2.5-

→˓GCCcore-10.2.0 22) PMIx/3.1.5-GCCcore-10.2.0
2) slurm/20.02.3 9) DefaultModules 16) libxml2/2.

→˓9.10-GCCcore-10.2.0 23) OpenMPI/4.0.5-GCC-10.2.0
3) apps 10) GCCcore/10.2.0 17)␣

→˓libpciaccess/0.16-GCCcore-10.2.0 24) OpenBLAS/0.3.12-GCC-10.2.0
4) site/tinkercliffs/easybuild/setup 11) zlib/1.2.11-GCCcore-10.2.0 18) hwloc/2.2.

→˓0-GCCcore-10.2.0 25) gompi/2020b
5) cray 12) binutils/2.35-GCCcore-10.2.0 19) libevent/

→˓2.1.12-GCCcore-10.2.0 26) FFTW/3.3.8-gompi-2020b
6) craype-x86-rome 13) GCC/10.2.0 20) UCX/1.9.0-

→˓GCCcore-10.2.0 27) ScaLAPACK/2.1.0-gompi-2020b
7) craype-network-infiniband 14) numactl/2.0.13-GCCcore-10.2.0 21) libfabric/

→˓1.11.0-GCCcore-10.2.0 28) foss/2020b

We see here that lower-level software (e.g., binutils) is also included in the module structure, reducing the risk of
conflicts in adding new versions later.

Usage

In this section we will describe how to use EasyBuild’s module system. We will use Gromacs as our example software.
We begin by noting that, even though Gromacs is a popular software package on HPC systems, upon login its executable
gmx is nowhere to be found:

[arcuser@tinkercliffs2 ~]$ which gmx
/usr/bin/which: no gmx in (/apps/useful_scripts/bin:/cm/shared/apps/slurm/20.02.3/sbin:/
→˓cm/shared/apps/slurm/20.02.3/bin:/home/arcuser/util:/usr/local/bin:/usr/bin:/usr/local/
→˓sbin:/usr/sbin:/opt/ibutils/bin:/usr/share/lmod/lmod/libexec)

To find it, we need to load the Gromacs module. To find a software package, you can use module spider. For
example:

5.3. Software Modules 141

https://docs.easybuild.io/en/latest/Common-toolchains.html
http://www.gromacs.org/

ARC Documentation, Release 1.0

[arcuser@tinkercliffs2 ~]$ module spider gromacs

→˓---
GROMACS:

→˓---

Description:
GROMACS is a versatile package to perform molecular dynamics, i.e. simulate the␣

→˓Newtonian equations of motion for systems with hundreds to millions
of particles. This is a CPU only build, containing both MPI and threadMPI builds␣

→˓for both single and double precision. It also contains the gmxapi
extension for the single precision MPI build.

Versions:
GROMACS/2020.1-foss-2020a-Python-3.8.2
GROMACS/2020.3-foss-2020a-Python-3.8.2

→˓---
For detailed information about a specific "GROMACS" module (including how to load the␣

→˓modules) use the module's full name.
For example:

$ module spider GROMACS/2020.3-foss-2020a-Python-3.8.2

→˓---

Note: You can also use module avail to list all modules, although the output is quite long. We provide it here, in
case it helps you find what you need.

To then load the module, you can use module load:

[arcuser@tinkercliffs2 ~]$ module reset; module load GROMACS/2020.3-foss-2020a-Python-3.
→˓8.2
Resetting modules to system default

We can use module list to list the modules we have loaded now:

[arcuser@tinkercliffs2 ~]$ module list

Currently Loaded Modules:
1) shared 14) numactl/2.0.13-GCCcore-9.3.0 27) ncurses/

→˓6.2-GCCcore-9.3.0
2) slurm/20.02.3 15) XZ/5.2.5-GCCcore-9.3.0 28)␣

→˓libreadline/8.0-GCCcore-9.3.0
3) apps 16) libxml2/2.9.10-GCCcore-9.3.0 29) Tcl/8.6.

→˓10-GCCcore-9.3.0
4) site/tinkercliffs/easybuild/setup 17) libpciaccess/0.16-GCCcore-9.3.0 30) SQLite/

→˓3.31.1-GCCcore-9.3.0
5) cray 18) hwloc/2.2.0-GCCcore-9.3.0 31) GMP/6.2.

→˓0-GCCcore-9.3.0
(continues on next page)

142 Chapter 5. Usage

ARC Documentation, Release 1.0

(continued from previous page)

6) craype-x86-rome 19) UCX/1.8.0-GCCcore-9.3.0 32) libffi/
→˓3.3-GCCcore-9.3.0
7) craype-network-infiniband 20) OpenMPI/4.0.3-GCC-9.3.0 33) Python/

→˓3.8.2-GCCcore-9.3.0
8) useful_scripts 21) OpenBLAS/0.3.9-GCC-9.3.0 34)␣

→˓pybind11/2.4.3-GCCcore-9.3.0-Python-3.8.2
9) DefaultModules 22) gompi/2020a 35) SciPy-

→˓bundle/2020.03-foss-2020a-Python-3.8.2
10) GCCcore/9.3.0 23) FFTW/3.3.8-gompi-2020a 36)␣
→˓networkx/2.4-foss-2020a-Python-3.8.2
11) zlib/1.2.11-GCCcore-9.3.0 24) ScaLAPACK/2.1.0-gompi-2020a 37) GROMACS/
→˓2020.3-foss-2020a-Python-3.8.2
12) binutils/2.34-GCCcore-9.3.0 25) foss/2020a
13) GCC/9.3.0 26) bzip2/1.0.8-GCCcore-9.3.0

We can see that the system now can find the Gromacs gmx executable:

[arcuser@tinkercliffs2 ~]$ which gmx
/apps/easybuild/software/tinkercliffs-rome/GROMACS/2020.3-foss-2020a-Python-3.8.2/bin/gmx

Finally, to clear out modules, we recommend using module reset, which will return the modules to their default state:

[arcuser@tinkercliffs2 ~]$ module reset; module list
Resetting modules to system default

Currently Loaded Modules:
1) shared 3) apps 5) cray 7)␣

→˓craype-network-infiniband 9) DefaultModules
2) slurm/20.02.3 4) site/tinkercliffs/easybuild/setup 6) craype-x86-rome 8)␣

→˓useful_scripts

Warning: Do not use module purge. As you see above, ARC includes a number of important packages, such as
the Slurm scheduler in the default modules. module purge will remove those, too, breaking key functionality. If
you accidentally use module purge, simply use module reset to reset to the default.

Using EasyBuild to Build Your Own Software

EasyBuild can also be used by users to install packages. We describe the steps briefly below; see also our video tutorial
on the subject.

The basic steps are:

1. Load the EasyBuild module to get access to the eb executable:

module reset; module load EasyBuild

2. Use eb -S to search for the software package that you need (the output is quite long in this case so we only show
a snippet):

[arcuser@tinkercliffs2 ~]$ eb -S ^netCDF
* $CFGS3/n/netCDF/netCDF-4.7.1-iimpi-2019b.eb

(continues on next page)

5.3. Software Modules 143

ARC Documentation, Release 1.0

(continued from previous page)

* $CFGS3/n/netCDF/netCDF-4.7.1-iimpic-2019b.eb
* $CFGS3/n/netCDF/netCDF-4.7.4-fix-mpi-info-f2c.patch
* $CFGS3/n/netCDF/netCDF-4.7.4-gompi-2020a.eb
* $CFGS3/n/netCDF/netCDF-4.7.4-gompi-2020b.eb
* $CFGS3/n/netCDF/netCDF-4.7.4-gompic-2020a.eb

3. Pick one of the versions and use eb -Dr filename.eb to see what it is going to do (the D in this case is for
“dry run”). The [x] lines indicate packages that are already installed. The [] lines are packages that will need
to be installed.

[arcuser@tinkercliffs2 ~]$ eb -Dr netCDF-4.7.4-gompi-2020b.eb
== Temporary log file in case of crash /localscratch/eb-ceKHhw/easybuild-asf_l0.log
== found valid index for /apps/easybuild/software/tinkercliffs-rome/EasyBuild/4.4.0/
→˓easybuild/easyconfigs, so using it...
== found valid index for /apps/easybuild/software/tinkercliffs-rome/EasyBuild/4.4.0/
→˓easybuild/easyconfigs, so using it...
Dry run: printing build status of easyconfigs and dependencies
CFGS=/apps/easybuild
* [x] $CFGS/ebfiles_repo/tinkercliffs-rome/M4/M4-1.4.18.eb (module: M4/1.4.18)
* [x] $CFGS/ebfiles_repo/tinkercliffs-rome/Bison/Bison-3.7.1.eb (module: Bison/3.7.
→˓1)
* [x] $CFGS/ebfiles_repo/tinkercliffs-rome/bzip2/bzip2-1.0.8-GCCcore-10.2.0.eb␣
→˓(module: bzip2/1.0.8-GCCcore-10.2.0)
* [] $CFGS/software/tinkercliffs-rome/EasyBuild/4.4.0/easybuild/easyconfigs/l/
→˓libiconv/libiconv-1.16-GCCcore-10.2.0.eb (module: libiconv/1.16-GCCcore-10.2.0)
* [x] $CFGS/ebfiles_repo/tinkercliffs-rome/expat/expat-2.2.9-GCCcore-10.2.0.eb␣
→˓(module: expat/2.2.9-GCCcore-10.2.0)
* [x] $CFGS/ebfiles_repo/tinkercliffs-rome/CMake/CMake-3.18.4-GCCcore-10.2.0.eb␣
→˓(module: CMake/3.18.4-GCCcore-10.2.0)
* [] $CFGS/software/tinkercliffs-rome/EasyBuild/4.4.0/easybuild/easyconfigs/d/
→˓Doxygen/Doxygen-1.8.20-GCCcore-10.2.0.eb (module: Doxygen/1.8.20-GCCcore-10.2.0)
* [x] $CFGS/ebfiles_repo/tinkercliffs-rome/libevent/libevent-2.1.12-GCCcore-10.2.0.
→˓eb (module: libevent/2.1.12-GCCcore-10.2.0)
* [x] $CFGS/ebfiles_repo/tinkercliffs-rome/numactl/numactl-2.0.13-GCCcore-10.2.0.
→˓eb (module: numactl/2.0.13-GCCcore-10.2.0)
* [x] $CFGS/ebfiles_repo/tinkercliffs-rome/OpenMPI/OpenMPI-4.0.5-GCC-10.2.0.eb␣
→˓(module: OpenMPI/4.0.5-GCC-10.2.0)
* [x] $CFGS/ebfiles_repo/tinkercliffs-rome/gompi/gompi-2020b.eb (module: gompi/
→˓2020b)
* [x] $CFGS/ebfiles_repo/tinkercliffs-rome/HDF5/HDF5-1.10.7-gompi-2020b.eb␣
→˓(module: HDF5/1.10.7-gompi-2020b)
* [] $CFGS/software/tinkercliffs-rome/EasyBuild/4.4.0/easybuild/easyconfigs/n/
→˓netCDF/netCDF-4.7.4-gompi-2020b.eb (module: netCDF/4.7.4-gompi-2020b)
== Temporary log file(s) /localscratch/eb-ceKHhw/easybuild-asf_l0.log* have been␣
→˓removed.
== Temporary directory /localscratch/eb-ceKHhw has been removed.

4. If you are okay with installing the packages marked with [], you can install them with eb -r filename.eb
(i.e., remove the D for “dry run” from the previous command):

[arcuser@tinkercliffs2 ~]$ eb -r netCDF-4.7.4-gompi-2020b.eb
== Temporary log file in case of crash /localscratch/eb-lsT7pO/easybuild-zdQblI.log

(continues on next page)

144 Chapter 5. Usage

ARC Documentation, Release 1.0

(continued from previous page)

== found valid index for /apps/easybuild/software/tinkercliffs-rome/EasyBuild/4.4.0/
→˓easybuild/easyconfigs, so using it...
== found valid index for /apps/easybuild/software/tinkercliffs-rome/EasyBuild/4.4.0/
→˓easybuild/easyconfigs, so using it...
== resolving dependencies ...
== processing EasyBuild easyconfig /apps/easybuild/software/tinkercliffs-rome/
→˓EasyBuild/4.4.0/easybuild/easyconfigs/l/libiconv/libiconv-1.16-GCCcore-10.2.0.eb
== building and installing libiconv/1.16-GCCcore-10.2.0...
== fetching files...
== creating build dir, resetting environment...
== unpacking...
== patching...
== preparing...
== configuring...
== building...
== testing...
== installing...

This process can be time-consuming depending on the package, so it may be worth starting it in, e.g., a screen session.
If the process ultimately completes with a line that looks like

== COMPLETED: Installation ended successfully

then you have successfully installed your software package. It can then be loaded from the module system like any
other module. In this case, we would use

module reset; module load netCDF/4.7.4-gompi-2020b

where we get the module name by converting the first - in the .eb file name to a / or by noting that EasyBuild printed
the following during installation:

== building and installing netCDF/4.7.4-gompi-2020b...

Environment variables

Sometimes it is important to know where a software package is installed so that you can point to it when installing other
software. For this purpose, EasyBuild provides $EBROOTSOFTWARE to point to the software installation location. For
example:

[arcuser@tinkercliffs2 ~]$ module reset; module load netCDF/4.7.4-gompi-2020a
Resetting modules to system default
[arcuser@tinkercliffs2 ~]$ ls $EBROOTNETCDF
bin easybuild include lib64 share

So to link to NetCDF libraries, one might use -L$EBROOTNETCDF/lib64.

5.3. Software Modules 145

ARC Documentation, Release 1.0

5.3.2 Hierarchical

Structure

Modules on ARC systems are based on a hierarchical structure where the modules that are available in one level of the
hierarchy depend on the modules loaded from the previous level. This ensures that users do not inadvertently select
module combinations that are incompatible and/or give inferior performance. The module levels are:

1. Compiler: Users first select the compiler that they want to use.

2. MPI Stack: Users then select the MPI stack that they want to use. MPI stack availability depends on the compiler
that is loaded.

3. High Level Software: Once a user has selected both a compiler and an MPI stack, they can load higher-level
software built against that compiler and MPI stack.

Please consult the software documentation for each system to determine that system’s default compiler and MPI stack.
Note that the default compiler and MPI stack are automatically loaded, so if a user wishes to use the system defaults
for each, they can simply start loading higher-level modules as soon as they log in. If not, the user may use the module
swap command to replace one module with another or the module purge command to remove all modules and then
load the modules that they want.

Usage

To change or view modules, the module command is used. The most common subcommands are: - View a list of
available modules (depends on the currently loaded modules):

module avail

• List all possible modules with the name modulename:

module spider modulename

• Print information about the modulename module, such as what the software package is, what environment vari-
ables and paths it sets, and what its dependencies are:

module show modulename

• View a list of modules currently loaded in your environment:

module list

• Add a module to your environment with one of the following:

module add modulename
module load modulename

• Remove a module from your environment with one of:

module rm modulename
module unload modulename

• Replace module1 with module2 in your environment. Any dependent modules in the module tree will be reloaded
to reflect the change.

146 Chapter 5. Usage

ARC Documentation, Release 1.0

module swap module1 module2

• Remove all modules from your environment:

module purge

The module command can be used at the command line and within job launch scripts.

Loading Software

The most basic module usage would be loading the Intel compiler and the HDF5 data management library built against
it:

module purge #Make sure no modules are loaded
module load intel/18.2 #Load intel compiler
module load hdf5/1.8.17 #Load HDF5 (built against the intel compiler)
module list #Print currently loaded modules

We see that an Intel module and an HDF5 module are loaded:

Currently Loaded Modules:
1) intel/18.2 2) hdf5/1.8.17

Now the system knows where the h5cc binary is located:

[arcuser@calogin2 ~]$ which h5cc
/opt/apps/intel18_2/hdf5/1.8.17/bin/h5cc

Finding a Software Package

To see what versions of the molecular dynamics software gromacs are installed, use:

module spider gromacs

In this case, we see that version 5.1.2 is available:

--
gromacs:
--
Description:
GROMACS

Versions:
gromacs/5.1.2

--
For detailed information about a specific "gromacs" module (including how to load the␣

→˓modules) use the module's full name.
For example:

$ module spider gromacs/5.1.2
--

5.3. Software Modules 147

ARC Documentation, Release 1.0

To see how to access gromacs version 5.1.2:

module spider gromacs/5.1.2

We see that it is built against several compiler/MPI stack combinations:

--
gromacs: gromacs/5.1.2
--
Description:
GROMACS

You will need to load all module(s) on any one of the lines below before the
→˓"gromacs/5.1.2" module is available to load.

gcc/5.2.0 mvapich2/2.2
gcc/5.2.0 openmpi/3.0.0
gcc/5.2.0 openmpi/3.1.2
gcc/6.1.0 openmpi/3.0.0
gcc/6.1.0 openmpi/3.1.2
intel/15.3 mvapich2/2.2
intel/15.3 openmpi/3.0.0
intel/15.3 openmpi/3.1.2
intel/18.2 openmpi/3.0.0

Help:
GROMACS is a versatile and extremely well optimized package to perform
molecular dynamics computer simulations and subsequent trajectory analysis.

Define Environment Variables:

$GROMACS_DIR - root
$GROMACS_BIN - binaries
$GROMACS_INC - includes
$GROMACS_LIB - libraries

Prepend Environment Variables:

So we can load one of them (it turns out that fftw is also required to load the module, as you will see if you leave it
out):

module purge; module load intel/18.2 openmpi/3.0.0 fftw/3.3.8 gromacs/5.1.2

And now the system knows where the gmx binary is:

[arcuser@calogin2 ~]$ which gmx
/opt/apps/intel18_2/openmpi3_0/gromacs/5.1.2/bin/gmx

148 Chapter 5. Usage

ARC Documentation, Release 1.0

5.4 Slurm Scheduler Interaction

Jobs are submitted to ARC resources through a job queuing system, or scheduler. Submission of jobs through a queueing
system means that jobs may not run immediately, but will wait until the resources it requires are available. The queuing
system thus keeps the compute servers from being overloaded and allocates dedicated resources across running jobs.
This will allow each job to run optimally once it leaves the queue. ARC uses the Slurm scheduler; descriptions of
common interactions with Slurm are provided below. For a more detailed Slurm user guide, check out SchedMD’s
online documentation and videos here: https://slurm.schedmd.com/tutorials.html. If you are familiar commands from
another resource manager (e.g., Moab/PBS/Torque) and simply need to translate them to Slurm, see https://slurm.
schedmd.com/rosetta.html.

5.4.1 Submission Script

Jobs are submitted with submission scripts that describe what resources the job requires and what the system should do
once the job runs. Example submissions scripts are provided in the documentation for each system and can be used as
a template for getting started. Note that jobs can also be started interactively, which can be very useful during testing
and debugging. The resource requests are similar to PBS/Torque and include:

• Partition (denoted by #SBATCH -p). Indicates the partition (or queue) to which the job should be submitted.
Different partitions are intended for different use cases (e.g., production, development, visualization) or hardware
and therefore have different usage limits. The partition parameters are described in the documentation for each
system.

• Walltime (denoted by #SBATCH -t). This is the time that you expect your job to run; so if you submit your job
at 5:00pm on Wednesday and you expect it to finish at 5:00pm on Thursday, the walltime would be 24:00:00.
Note that if your job exceeds the walltime estimated during submission, the scheduler will kill it. So it is
important to be conservative (i.e., to err on the high side) with the walltime that you include in your sub-
mission script. Acceptable time formats include minutes, minutes:seconds, hours:minutes:seconds,
days-hours,days-hours:minutes and days-hours:minutes:seconds.

• Hardware (denoted by #SBATCH --gres=gpu:1, #SBATCH --mem=500G, #SBATCH --exclusive, etc). This
is the hardware that you want to reserve for your job. The types and quantity of available hardware, how to request
them, and the limits for each user are described in the documentation for each system.

• Account (denoted by #SBATCH --account=[allocation]). Indicates the allocation account to which you
want to charge the job. (Only applies to some systems - see system documentation.)

The submission script should also specify what should happen when the job runs:

• Software Modules. Use module commands to add the software modules that your job will need to run.

• Run. Finally, you need to specify what commands you want to run to execute your computation. This can be
execution of your own program or a call to a software package.

As an example, the following is a basic hello world example.

#!/bin/bash
#SBATCH -J hello-world
#SBATCH -p normal_q
#SBATCH -N 1 --ntasks-per-node=1 --cpus-per-task=1 # this requests 1 node, 1 core.
#SBATCH -t 10:00 # 10 minutes
#SBATCH --gres=gpu:pascal:4
#SBATCH --account=test
#SBATCH --export=NONE # this makes sure the compute environment is clean
echo hello world

5.4. Slurm Scheduler Interaction 149

https://slurm.schedmd.com/tutorials.html
https://slurm.schedmd.com/rosetta.html
https://slurm.schedmd.com/rosetta.html
https://secure.hosting.vt.edu/www.arc.vt.edu/?page_id=138
https://secure.hosting.vt.edu/www.arc.vt.edu/?page_id=992

ARC Documentation, Release 1.0

5.4.2 Job Management

To submit your job to the queuing system, use the command sbatch. For example, if your script is in JobScript.sh, the
command would be:

sbatch ./JobScript.sh

This will return a message with your job id such as:

Submitted batch job 5123

Here 5123 is the job number. Once a job is submitted to a queue, it will wait until requested resources are available
within that queue, and will then run if eligible. Eligibility to run is influenced by the resource policies in effect for the
queue. To check a job’s status, use the squeue command:

squeue -v 5123

To check the status of more than one job or the queues in general, use squeue. Examples include:

squeue --state=Running #View all running jobs
squeue --users=username #View only a given user's jobs

If your job has not started and you are unsure why, this FAQ provides some common explanations. To remove a job
from the queue, or stop a running job, use the command scancel. For job number 5123, the command would be:

scancel 5123

5.4.3 Output

When your job has finished running, any outputs to stdout or stderr will be placed in a file in the directory where the
job was submitted. For example, for a job submitted from JobScript.sh and with job ID 5123, the output would be in:

slurm-5123.out # Output and errors will be here

This behavior can be modified using the --output= and --error= flags. Any files that the job writes to permanent
storage locations will simply remain in those locations. Files written to locations only available during the life of the
job (e.g. TMPFS or TMPDIR) will be removed once the job is completed, so those files must be moved to a permanent
location at the end of the submission script.

5.5 Video Tutorials

ARC provides a number of video tutorials on our channel on video.vt.edu. In particular, the following sequence walks
a user through the fundamentals of ARC usage in less than an hour:

150 Chapter 5. Usage

https://secure.hosting.vt.edu/www.arc.vt.edu/?page_id=2#jobstuck
https://secure.hosting.vt.edu/www.arc.vt.edu/?page_id=112
https://video.vt.edu/channel/Advanced%2BResearch%2BComputing/

ARC Documentation, Release 1.0

5.5.1 Login

These videos will walk the user through accessing our systems for the first time (and streamlining access for subsequent
logins):

• Login with SSH plus Using SSH Keys and Agent to simplify logins, and/or

• Open OnDemand

5.5.2 Accessing Software

The following videos will walk the user through accessing software that ARC has installed or through setting up your
own packages:

• Using Modules to Access Scientific Software - EasyBuild (TinkerCliffs/Infer) version, and/or

• Using Modules to Access Scientific Software - Hierarchical (Pre-2020) version, and/or

• Creating Custom Software Modules with EasyBuild, and/or

• Manual Install of Custom Software Modules

5.5.3 Scheduler interaction (job submission)

The following will walk the user through the process of submitting interactive jobs for testing/development and batch
jobs for production research runs:

• Interactive and Batch Jobs

Note that these videos require a VT Login to access. Also, each video has a table of contents that can be used to skip
between sections; this can be accessed by clicking the “hamburger” (three horizontal bars) button at the top left of the
video.

Contents:

• Getting Started: Basic information for people new to HPC or just new to ARC

• Resources: Descriptions of the hardware and services that we offer

• Software: Lists of and user guides for software installed on ARC systems

• Usage: Tutorials for how to use ARC systems

• PI Information: Key information for faculty members or project principal investigators (PIs)

To request help:

• Visit Office Hours

• Request a Consultation

Other key links:

• Create an ARC User Account

• Video tutorials

• Frequently asked questions

5.5. Video Tutorials 151

https://video.vt.edu/media/ARCA+Accessing+clusters+from+the+command+line+via+SSH/1_nkojfb72/176584251
https://video.vt.edu/media/ARCA+Using+SSH+Keys+and+Agent+to+simplify+logins/1_68mcs8yt/176584251
https://video.vt.edu/media/ARCA+Open+OnDemand+for+Browser-based+Cluster+Access/1_nkp1ebuu/176584251
https://video.vt.edu/media/ARCA+Using+modules+to+access+software+packages+%28EasyBuild+version%29/0_nhj2cdjy/176584251
https://video.vt.edu/media/ARCA+Using+modules+to+access+software+packages+%28Pre-2020+version%29/1_f8unqdml/176584251
https://video.vt.edu/media/Creating+Custom+Software+Modules+with+EasyBuild/1_et3mu28o
https://video.vt.edu/media/Building+Custom+Software+Modules+Manually+on+ARC%27s+Resources/1_ylh24w9q
https://video.vt.edu/media/ARCA+Interactive+and+Batch+Jobs/1_doz5ylqg/176584251
https://arc.vt.edu/office-hours/
https://arc.vt.edu/help
https://arc.vt.edu/account

	Getting Started
	The Basics
	Learning Curve
	Familiar with HPC, new to ARC
	Training
	Getting Help

	Information for Faculty/Project PIs
	Citations
	Cost Center
	Intent
	Free Tier
	Job Priority
	Current Cost Structure
	TinkerCliffs
	Storage and other available resources

	Facilities, Equipment, and Other Resources Statement
	Investment Program
	Intent
	Memorandum of Understanding (MOU)
	To Invest

	Resources
	Computational Resources
	TinkerCliffs, ARC’s Flagship Resource
	Overview
	A100 GPU Nodes

	Get Started
	Policies
	Modules
	Architecture
	Optimization
	Examples
	Stream
	MT-DGEMM
	AOCC
	GCC
	Intel
	Results

	HPL
	MPI Only (1 MPI process/core)
	Hybrid MPI+OpenMP (1 MPI process/L3 cache)
	Results

	Infer, GPU Cluster
	Overview
	Login
	Policies
	Modules

	Cascades, CPU/GPU Cluster
	Overview
	Technical Specifications
	Policies
	Access
	Job Submission

	DragonsTooth, High-Throughput Computing
	Overview
	Technical Specifications
	Policies
	Access
	Job Submission

	Huckleberry
	Overview
	Login
	Basic Job Submission and Monitoring
	Software
	Python
	Jupyter Notebooks
	PowerAI

	NUMA
	PowerAI Installation & Usage (Updated in April 2019)
	Part 1. PowerAI Library Usage (PREFERRED)
	Part 2. Installation

	List of GPUs on ARC Resources
	Open OnDemand
	Features
	Usage instructions
	Examples

	Storage Resources
	Overview
	Home
	Group and Project
	Quotas on Project

	Work
	Archive
	Best Practices for archival storage

	Local Scratch
	Memory
	Checking Usage

	Software
	Examples
	Table of Software on ARC Systems
	Lists of Software Installed on ARC Systems
	List of Software Modules on Infer P100 Nodes
	List of Software Modules on Infer T4 Nodes
	List of Software Modules on Infer V100 Nodes
	List of Software Modules on TinkerCliffs A100 Nodes
	List of Software Modules on TinkerCliffs Intel AP Nodes
	List of Software Modules on TinkerCliffs AMD Rome Nodes

	Use of ARC for geospatial analysis
	Introduction
	Data location
	Common software and availability
	Interface
	R from the command line
	R startup, .Renviron and adding packages
	R from a Script
	Parallel Computing in R
	parallel package
	MPI

	LS-DYNA
	Introduction
	Availability
	License availability

	Interface
	Parallel Computing with LS-DYNA
	Job Submission
	Hybrid

	Example Scaling Results for Hybrid:

	MATLAB
	Introduction
	Availability
	Interface
	Parallel Computing in MATLAB
	Job Submission
	Setup
	Running Jobs
	Checking Jobs
	Remote Output Files
	Full Example

	Submitting Jobs from the Linux Command Line
	Changing MATLAB’s Path
	Using the MATLAB Compiler (mex)

	Python
	Introduction
	Availability
	Interface
	Managing environments
	Running without environments
	Command line running of Python scripts
	Parallel Computing in Python

	PyTorch
	Introduction
	Availability
	Interaction
	Quick example from the pytorch.org site
	Parallel Computing in Python
	Command line running of Python
	Managing environments
	Full Example

	R
	Introduction
	Availability
	Interface
	R from the command line
	R startup, .Renviron and adding packages
	R from a Script

	Parallel Computing in R
	parallel package
	bootstrap example with mcapply
	doParallel example

	MPI

	Singularity
	Introduction
	Availability
	Usage
	Container building workflow

	STATA
	Introduction
	Availability
	Interface
	STATA from the command line
	Full Script Example

	Tensorflow
	Introduction
	Availability
	Interface
	Parallel Computing in Python
	Command line running of Python
	Managing environments
	Full Example

	Usage
	Allocations
	Introduction
	Allocation Types
	Student eligibility

	Frequently Asked Questions
	Why can’t I log in?
	How much does it cost to use ARC’s systems?
	Why is my job not starting?
	Why can’t I run on the login node?
	When will my job start?
	How do I submit an interactive job?
	How do I change a job’s stack size limit?
	How do I check my job’s resource usage?
	How can I monitor GPU utilization during my job?
	I need a software package for my research. Can you install it for me?
	How can I add my own software installation to my module system?
	What is the best way to make sure everyone in my group has the same access to all the files in our shared directory?
	What does a “Disk quota exceeded” error mean?
	What does a module: command not found error mean?
	What does a Detected 1 oom-kill event(s) error mean?
	Why are basic commands like sbatch not recognized?
	How do I add a user to an allocation?
	How do I attach to my process for debugging?
	How can I submit a job that depends on the completion of another job?
	How can I run multiple serial tasks inside one job?
	How can I run multiple short, parallel tasks inside one job?

	Software Modules
	EasyBuild
	Toolchains
	Usage
	Using EasyBuild to Build Your Own Software
	Environment variables

	Hierarchical
	Structure
	Usage
	Loading Software
	Finding a Software Package

	Slurm Scheduler Interaction
	Submission Script
	Job Management
	Output

	Video Tutorials
	Login
	Accessing Software
	Scheduler interaction (job submission)

