

    
      
          
            
  
Welcome to Advanced Research Computing at Virginia Tech

This site provides in depth documentation of how to use our resources.
For more general information about ARC, see our main site [https://arc.vt.edu].




Contents:


	Getting Started: Basic information for people new to HPC or just new to ARC


	Resources: Descriptions of the hardware and services that we offer


	Software: Lists of and user guides for software installed on ARC systems


	Usage: Tutorials for how to use ARC systems


	PI Information: Key information for faculty members or project principal investigators (PIs)




To request help:


	Visit Office Hours [https://arc.vt.edu/office-hours/]


	Request a Consultation [https://arc.vt.edu/help]




Other key links:


	Create an ARC User Account [https://arc.vt.edu/account]


	Video tutorials


	Frequently asked questions







            

          

      

      

    

  

    
      
          
            
  
Getting Started

New to ARC? No problem. See the content below to get started, but don’t hesitate to reach out to us if you have questions or need assistance.


The Basics

The following are the basic steps to getting started with ARC resources (and at most research computing centers):


	Get an account [https://arc.vt.edu/account]


	Get an allocation (if you are a faculty member/PI) or get access to one (if you are a student)


	Decide which hardware you want to use


	Find or install your software


	Develop your workflow, possibly via interactive jobs


	Submit your production research via batch jobs




In addition to the text documentation linked above, we offer video tutorials of most of these steps as well as training courses to help people get started.



Learning Curve

There can be a learning curve in using high-performance computing (HPC) resources. In particular:


	ARC systems run Linux, and traditional use is via the command line. However, the latter has become less true in recent years. For example, via Open OnDemand ARC users can now access our systems from their browser and start many popular applications such as Jupyter notebooks via the click of a button.


	To run on ARC systems, you must submit your work through the scheduler. This is different from running on, e.g., a lab workstation. However, this mostly just involves writing down a list of commands you want the system to run and how many resources you want it to use – it is not difficult once you get used to it.


	To leverage HPC resources, your program needs to be able to leverage parallel computing in some way. However, may third party programs or libraries exist to make this easier and ARC computational scientists are available if you need assistance.






Familiar with HPC, new to ARC

If you are an experienced HPC user who is new to ARC, you may just need to know the following:


	ARC uses the Slurm scheduler.


	ARC uses EasyBuild [https://easybuild.io/] for software modules.


	You will need to have an allocation to charge your jobs to. This is free of charge unless you would like to invest in priority access.


	Descriptions of our compute and storage resources can be found here.






Training

To help users get started, we offer introductory training sessions throughout the year via the Professional Development Network [https://profdev.tlos.vt.edu/]. Our computational scientists are also available for classroom presentations [https://arc.vt.edu/classroom_presentations/] on high-performance, parallel, scientific, or other research computing topics – this is a great way to get a research group up to speed.

If you prefer to do things at your own pace, we offer video tutorials that walk through each of the steps of getting started with ARC.



Getting Help

If you are interested in using ARC’s resources for your current or future projects, or if you would just like to learn more about our computing systems and services, please request a consultation [https://arc.vt.edu/help] or drop by our office hours [https://arc.vt.edu/office-hours/]. You do not need to have any prior experience with high-performance computing — our team can assist you in determining the right system for your project.





            

          

      

      

    

  

    
      
          
            
  
Information for Faculty/Project PIs

The following pages provide information that might be of specific use to faculty members or other project Principal Investigators (PIs).




Contents:


	ColdFront [https://coldfront.arc.vt.edu]: Interface for requesting compute or storage allocations


	Cost Center: Description of ARC's cost center program if you need more resources than ARC provides for free (even in short intervals for conference deadlines, etc)


	Investment Program: Description of ARC's investment program if you want to acquire a dedicated portion of one of ARC's systems


	FE&R Statement: Facilities, Equipment, and Other Resources statement for inclusion in proposals


	Citations: Example acknowledgement of ARC for inclusion in papers that were prepared with the help of our systems







            

          

      

      

    

  

    
      
          
            
  
Citations

Recognition and documentation of the contribution that ARC’s systems play in breakthrough research is essential to ensuring continued support for and availability of cutting-edge computing resources at Virginia Tech. Please cite Advanced Research Computing at Virginia Tech in any research report, journal article, or other publication that requires citation of an author’s contributions.

Suggested verbiage:


The authors acknowledge Advanced Research Computing at Virginia Tech for providing computational resources and technical support that have contributed to the results reported within this paper. URL: https://arc.vt.edu/







            

          

      

      

    

  

    
      
          
            
  
Cost Center


Intent

The Cost Center provides researchers or projects with the ability to purchase computational or storage resources beyond what ARC provides for free, for computational “bursts” to meet, e.g., conference deadlines, or short-term storage of large datasets. It provides:


	Compute or storage beyond the free tier


	Priority quality of service (QOS) for faster job execution


	PI-specified sub-account limits


	Requestable through ColdFront [https://coldfront.arc.vt.edu/]




The program is also intended to provide the accounting infrastructure to allow PIs to include access to resources in grant proposals and contracts.

If you would like to get access to dedicated computational resources or long-term expansion of storage, you may want to instead consider the Investment Program.



Free Tier

ARC is working to decrease HPC cost to VT, improve access, services and augment VT’s research and teaching missions.  As part of this, we are realigning ARC to more naturally support research groups (and class groups). Starting on TinkerCliffs, the Division of IT provides the following resources for each ARC user account free of charge:



	Category

	User

	PI (project request)





	Compute

	240 core-hours/month

	600,000 core-hours/month (TinkerCliffs only)



	Home storage

	640 GB

	–



	User workspace storage

	1 TB

	–



	Project storage

	–

	25 TB



	Archive storage

	/vtarchive/home/pid

	/vtarchive/groups/group






Allocations can also be submitted for class needs; these are “owned” by ARC and not billed toward a PI’s account.


Note

Jobs submitted to preemptable partitions do NOT count against the above user/project limits.





Job Priority

Priority determines position in “line”:



	Quality of Service (QoS)

	Available by/through:





	priority (high)

	for-fee via cost-center



	normal (default)

	normal








Current Cost Structure


TinkerCliffs

The fee structure on TinkerCliffs is as follows:



	Queue

	Cost





	normal_q

	$0.0023 / core-hour



	largemem_q

	$0.01 / core-hour



	intel_q

	$0.0091 / core-hour








Storage and other available resources

Temporary expansion of /project storage can be requested.  This will be billed at $2.1694 per TB per month.

For server hosting, enterprise backup or other needs, please send Terry Herdman an email.






            

          

      

      

    

  

    
      
          
            
  
Facilities, Equipment, and Other Resources Statement

The following is a draft Facilities, Equipment and Other Resources statement that researchers can include in research proposals:

Computing resources will be provided through Advanced Research Computing (ARC) within the Division of Information Technology at Virginia Tech. ARC provides cutting-edge high-performance computing and visualization resources. Currently available high performance computing (HPC) systems include:


	TinkerCliffs: a general purpose CPU cluster. This cluster has approximately 40,000 AMD Rome CPU cores, HDR Infiniband offering 100 Gbps throughput, nodes for high-memory applications, an additional 16 Intel Xeon AP nodes and four nodes with eight NVIDIA A100-80GB GPUs each


	Infer: GPU-based cluster made up of 58 compute nodes with a total of 4 NVIDIA Volta V100 GPUs, 18 NVIDIA Tesla T4 GPUs, and 80 NVIDIA Tesla P100 GPUs; Infiniband interconnect


	Cascades: General purpose cluster with 190 compute nodes equipped with two 16-core Intel Xeon “Broadwell” CPU and 128 GB of memory; 38 compute nodes equipped with two 12-core Intel Xeon Skylake CPU, 376 GB of memory, and two NVIDIA V100 GPU; 4 compute nodes with two NVIDIA K80 GPU, 512 GB of memory and one 2 TB NVMe flash card; 2 four-socket compute nodes with four 18-core Intel Xeon “Broadwell” CPU and 3 TB of memory; Mellanox EDR Infiniband interconnect


	Dragonstooth: High-throughput cluster with 48 two-socket compute nodes equipped with two 12-core Intel Xeon “Haswell” CPU, 256 GB of memory and four 480GB SSD drives




Parallel filesystems provide over 11 Petabytes of high performance storage, and a tape archive is provided to support long term data storage.

ARC’s Visionarium Lab also provides an array of visualization resources, including the VisCube, an immersive 10′ x 10′ three-dimensional visualization environment. In all, the VT Visionarium provides nearly 86 million pixels, 4 billion triangles-per-second and 22 TB/s of GPU memory bandwidth. ARC resources are able to leverage Virginia Tech’s excellent network connectivity, and network. Virginia offers access to advanced national networks, including ESnet, Internet2, and Mid Atlantic Crossroads.

Upcoming Resources

In the next year, ARC plans to release additional resources supporting:


	Protected data: This will be a dedicated cluster and storage supporting data needing elevated protections. This cluster will be available early in the winter of 2021-2022.


	AI/ML: Additional nodes will be added to the TinkerCliffs cluster to support AI/ML applications. Scheduled to be released in late Spring 2022.


	Cloud: Kubernetes resource for cloud-like applications.







            

          

      

      

    

  

    
      
          
            
  
Investment Program


Intent

The investment program is for researchers or projects who want dedicated resources from ARC over some period of time:


	For long-term (1-5 year) project needs


	Reserved compute hardware via dedicated partition (with preemptable overlay)


	Expansion of Project or Work via quota increase


	Available via MOU




If you are less interested in dedicated hardware and just want to use more resources than ARC provides for free – for example, in bursts before conference deadlines – you might instead consider the Cost Center.



Memorandum of Understanding (MOU)

An investment Memoradum Of Understanding (MOU) is updated and made available for each new cluster as it comes online. The current MOU covers TinkerCliffs.

For example investment MOUs, see below:


	Compute


	Storage






To Invest

If you have interest in learning more about the Investment Computing Program, please submit a consultation request [https://arc.vt.edu/help]. ARC can provide a brief presentation on the Investment Computing program at department meetings or to research teams if desired.





            

          

      

      

    

  

    
      
          
            
  
Resources

Contents:



	Computational Resources
	TinkerCliffs, ARC’s Flagship Resource

	Infer, GPU Cluster

	Cascades, CPU/GPU Cluster

	DragonsTooth, High-Throughput Computing

	Huckleberry





	List of GPUs on ARC Resources

	Open OnDemand
	Features

	Usage instructions

	Examples





	Storage Resources
	Overview

	Home

	Group and Project

	Work

	Archive

	Local Scratch

	Memory

	Checking Usage












            

          

      

      

    

  

    
      
          
            
  
Computational Resources

Contents:



	TinkerCliffs, ARC’s Flagship Resource
	Overview

	Get Started

	Policies

	Modules

	Architecture

	Optimization

	Examples





	Infer, GPU Cluster
	Overview

	Login

	Policies

	Modules





	Cascades, CPU/GPU Cluster
	Overview

	Technical Specifications

	Policies

	Access

	Job Submission





	DragonsTooth, High-Throughput Computing
	Overview

	Technical Specifications

	Policies

	Access

	Job Submission





	Huckleberry
	Overview

	Login

	Basic Job Submission and Monitoring

	Software

	NUMA

	PowerAI Installation & Usage (Updated in April 2019)












            

          

      

      

    

  

    
      
          
            
  
TinkerCliffs, ARC’s Flagship Resource


Overview

TinkerCliffs came online in the summer of 2020. With nearly 42,000 cores and over 93 TB of RAM, TinkerCliffs is nearly seven times the size of BlueRidge, ARC’s previous flagship CPU compute system, which was retired at the end of 2019. TinkerCliffs hardware is summarized in the table below.



	

	Base Compute Nodes

	High Memory Nodes

	Intel Nodes

	A100 GPU Nodes

	Total





	Vendor

	Cray

	Cray

	HPE

	HPE Apollo 6500

	-



	Chip

	AMD EPYC 7702 [https://en.wikichip.org/wiki/amd/epyc/7702]

	AMD EPYC 7702 [https://en.wikichip.org/wiki/amd/epyc/7702]

	Intel Xeon Platinum 9242 [https://en.wikichip.org/wiki/intel/xeon_platinum/9242]

	AMD EPYC 7742 [https://en.wikichip.org/wiki/amd/epyc/7742]

	-



	Nodes

	308

	8

	16

	4

	336



	Accelerators

	-

	-

	-

	8x NVIDIA A100-80G

	-



	Cores/Node

	128

	128

	96

	128

	-



	Memory (GB)/Node

	256

	1,024

	384

	2048

	-



	Total Cores

	39,424

	1,024

	1,536

	512

	42,496



	Total Memory (GB)

	78,848

	8,192

	6,144

	8192

	101,376



	Local Disk

	480GB SSD

	480GB SSD

	3.2TB NVMe

	11.7TB NVMe

	-



	Interconnect

	HDR-100 IB

	HDR-100 IB

	HDR-100 IB

	4x HDR-200 IB

	-






Tinkercliffs is hosted in the Steger Hall HPC datacenter on the Virginia Tech campus, so it is physically separated from other ARC HPC systems which are hosted in the AISB Datacenter at the Corporate Research Center (CRC) in Blacksburg.

For HPC, it is important that file systems (data storage) be physically near to the compute systems, so there is not direct connectivity from Tinkercliffs to some of the legacy filesystems (eg. GPFS /groups and /work). The /home filesystem on Tinkercliffs is the same as on legacy clusters, but for the reasons stated above, should not be used for i/o intensive workloads.

A BeeGFS file system supports /projects and /work filesystems for group collaboration and high-performance input/output (I/O).


A100 GPU Nodes

Four nodes nodes equipped with GPU accelerators were added to Tinkercliffs in June 2021. Each of these nodes is designed to be a clone of NVIDIA’s DGX nodes to provide a dense GPU resource for the VT research computing community. The eight NVIDIA A100-80G [https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf] GPUs in each node are interconnected with NVIDIA’s NVLink technology. For internode communications, each chassis is equipped with four Mellanox HDR-200 Infiniband cards distributed across the PCIe Gen4 bus to provide each GPU with a nearby, high speed, low latency, path to the Infiniband network.




Get Started

Tinkercliffs can be accessed via one of the two login nodes:

tinkercliffs1.arc.vt.edu
tinkercliffs2.arc.vt.edu

For testing purposes, all users will be alloted 240 core-hours each month in the “personal” allocation. Researchers at the PI level are able to request resource allocations in the “free” tier (usage fully subsidized by VT) and can allocate 600,000 monthly billing units (normal_q core-hours) among their projects.

To do this, log in to the ARC allocation portal https://coldfront.arc.vt.edu,


	select or create a project


	click the “+ Request Resource Allocation” button


	Choose the “Compute (Free) (Cluster)” allocation type




Usage needs in excess of 600,000 monthly billing units can be purchased via the ARC Cost Center [https://arc.vt.edu/arc-investment-computing-and-cost-center/].



Policies

Limits  are set on the scale and quantity of jobs at the user and allocation (Slurm account) levels to help ensure availability of resources to a broad set of researchers and applications. These are the limits applied to free tier usage (note that the terms “cpu” and “core” are used interchangably here following Slurm terminology):



	

	normal_q

	dev_q

	largemem_q

	intel_q

	a100_normal_q

	a100_dev_q

	interactive_q

	preemptable_q





	Node Type

	Base Compute

	Base Compute

	High Memory

	Intel

	A100 GPU

	A100 GPU

	Base Compute

	Base Compute



	Billing Weight

	1

	1

	4.045454/core

	3.772727/core

	155.26/GPU

	155.26/GPU

	0.25/core

	0 (no billing)



	Number of Nodes

	302

	307

	8

	16

	4

	4

	2

	307



	MaxRunningJobs (User)

	24

	2

	4

	8

	12

	2

	4

	64



	MaxSubmitJobs (User)

	240

	3

	40

	80

	48

	8

	4

	640



	MaxRunningJobs (Allocation)

	48

	3

	6

	12

	24

	4

	-

	128



	MaxSubmitJobs (Allocation)

	480

	6

	60

	120

	48

	8

	-

	1280



	MaxNodes (User)

	64

	64

	4

	8

	1

	1

	-

	-



	MaxNodes (Allocation)

	96

	96

	6

	12

	2

	2

	-

	-



	MaxCPUs (User)

	8192

	8192

	512

	768

	128

	128

	64

	-



	MaxCPUs (Allocation)

	12288

	12288

	768

	1152

	256

	256

	128

	-



	MaxGPUs (User)

	-

	-

	-

	-

	8

	8

	-

	-



	MaxGPUs (Allocation)

	-

	-

	-

	-

	16

	16

	-

	-



	MaxWallTime

	6 days

	4 hours

	6 days

	6 days

	6 days

	4 hours

	4 hours

	-



	Free allowance at Max[CPU/GPU]s (User)

	3.05 days

	3.05 days

	12.07 days

	8.63 days

	20.13 days

	-

	-

	-



	Free allowance at Max[CPU/GPU]s (Alloc)

	2.03 days

	2.03 days

	9.05 days

	6.47 days

	10.06 days

	-

	-

	-






Tinkercliffs is part of the ARC cost center [https://arc.vt.edu/arc-investment-computing-and-cost-center/], which provides a substantial “free tier” of usage. Each researcher is provided 600,000 billing units (1 billing unit = 1 TC normal_q core-hour) which can be divided among all projects and allocations they own. Monthly billing is based on usage attributed to jobs which complete in that month, so jobs which start in month A and finish in month B are billed in month B.



Modules

TinkerCliffs is different from previous ARC clusters in that it uses a new application stack/module system based on EasyBuild [https://easybuild.readthedocs.io]. Our old application stack was home-grown and involved a fair amount of overhead in getting new modules - e.g., new versions of a package - installed. EasyBuild streamlines a lot of that work and should also make it trivial in some cases for users to install their own versions of packages if they so desire. Key differences from a user perspective include:


	Hierarchies are replaced by toolchains. Right now, there are two:


	foss (“Free Open Source Software”): gcc compilers, OpenBLAS for linear algebra, OpenMPI for MPI, etc


	intel: Intel compilers, Intel MKL for linear algebra, Intel MPI






	Instead of loading modules individually (e.g., module load intel mkl impi), a user can just load the toolchain (e.g., module load intel/2019b).


	Modules load their dependencies, e.g.,




$ module reset; module load HPL/2.3-intel-2019b; module list 
  
  Currently Loaded Modules:
    1) shared                              6) craype-x86-rome            11) binutils/2.32-GCCcore-8.3.0          16) intel/2019b
    2) slurm/20.02.3                       7) craype-network-infiniband  12) iccifort/2019.5.281                  17) HPL/2.3-intel-2019b
    3) apps                                8) DefaultModules             13) impi/2018.5.288-iccifort-2019.5.281
    4) site/tinkercliffs/easybuild/setup   9) GCCcore/8.3.0              14) iimpi/2019b
    5) cray                               10) zlib/1.2.11-GCCcore-8.3.0  15) imkl/2019.5.281-iimpi-2019b






	All modules are visible with module avail. So in many cases it is probably better to search with module spider rather than printing the whole list.


	Some key system software, like the Slurm scheduler, are included in default modules. This means that module purge can break important functionality. Use module reset instead.


	Lower-level software is included in the module structure (see, e.g., binutils in the HPL example above), which should mean less risk of conflicts in adding new versions later.


	Environment variables (e.g., $SOFTWARE_LIB) available in our previous module system may not be provided. Instead, EasyBuild typically provides $EBROOTSOFTWARE to point to the software installation location. So for example, to link to NetCDF libraries, one might use -L$EBROOTNETCDF/lib64 instead of the previous -L$NETCDF_LIB.






Architecture


	The AMD Rome architecture is similar to Cascades in that it is x86_64 but lacks the AVX-512 instruction set added to Intel processors in the last couple of years.


	Nodes are larger (128 cores) and have more memory bandwidth (~350 GB/s).


	There are eight NUMA (memory locality) domains per node and one L3 cache for every four cores.






Optimization

See also the tuning guides available at https://developer.amd.com/, especially this guide to compiler flags [https://developer.amd.com/wordpress/media/2020/04/Compiler%20Options%20Quick%20Ref%20Guide%20for%20AMD%20EPYC%207xx2%20Series%20Processors.pdf].


	Cache locality really matters - process pinning can make a big difference on performance.


	Hybrid programming often pays off - one MPI process per L3 cache with 4 threads is often optimal.




Intel toolchain:


	Fast, though our testing has found that v2020 is slower than v2019


	Avoid –xhost


	Use -march=core-avx2 to get the optimal vectorization instruction set


	Use the following environment variables for MKL (we set these as part of the MKL module):




  export MKL_DEBUG_CPU_TYPE=5
  export MKL_ENABLE_INSTRUCTIONS=AVX2





Foss (GCC) toolchain:


	Use -mtune=znver2 -march=znver2 to target the Zen2 architecture


	Use -mavx2 to get the optimal vectorization instruction set




AOCC Compiler:


	AMD compiler. Very fast on Rome architectures. ARC is working on getting AOCC integrated into a toolchain.


	Use -mtune=znver2 -march=znver2 to target the Zen2 architecture


	Use -mavx2 to get the optimal vectorization instruction set






Examples

See below for a series of examples of how to compile code for a variety of compilers and for how to run optimally in a variety of configurations. These and a wide variety of simple application-specific examples can be found in our examples repository.


Stream

STREAM [https://www.cs.virginia.edu/stream/] is a memory bandwidth benchmark. To maximize bandwidth, we run in parallel with one process per L3 cache (cores 0, 4, …, 124).

  #Load the Intel toolchain
  module reset; module load intel/2019b
  
  #Tell OpenMP to use every 4th core
  export OMP_PROC_BIND=true
  export OMP_NUM_THREADS=32
  export OMP_PLACES="$( seq -s },{ 0 4 127 | sed -e 's/\(.*\)/\{\1\}/' )"
  
  #Compile
  icc -o stream.intel stream.c -DSTATIC -DNTIMES=10 -DSTREAM_ARRAY_SIZE=2500000000 \
    -mcmodel=large -shared-intel -Ofast -qopenmp -ffreestanding -qopt-streaming-stores always
  
  #Run
  ./stream.intel





Results:

  Function    Best Rate MB/s
  Copy:             341475.1 
  Scale:            341770.0 
  Add:              336668.3 
  Triad:q:          336972.6 







MT-DGEMM

mt-dgemm [https://portal.nersc.gov/project/m888/apex/mt-dgemm_160114.tgz] is a threaded matrix multiplication program that can be used to benchmark dense linear algebra libraries. Here we use it to show how to link against linear algebra libraries and run efficiently across a socket.


AOCC

#Load the aocc and blis modules
module reset; module load aocc/aocc-compiler-2.1.0 amd-blis/aocc/64/2.1

#Compile:
#  Build for the Rome architecture: -mtune=znver2 -march=znver2
#  Use fast vectorization: -mavx2
#  Use math libraries: -lm
#  Use OpenMP: -fopenmp -lomp
#  Other optimizations: -Ofast -ffp-contract=fast -funroll-loops
#  Link with AMD BLIS linear algebra library: -I$BLISDIR/../include $BLISDIR/libblis-mt.a
#  Macro used by the mt-dgemm program: -D USE_CBLAS
clang -mtune=znver2 -march=znver2 -mavx2 -lm -fopenmp -lomp -Ofast -ffp-contract=fast -funroll-loops -I$BLISDIR/../include $BLISDIR/libblis-mt.a -D USE_CBLAS -o mt-dgemm.aocc mt-dgemm.c

#Run with 64 OpenMP threads on cores 0-63 (socket 1) using NUMA memory regions 0-3 (socket 1). This keeps Linux from moving the threads away from memory.
OMP_NUM_THREADS=64 GOMP_CPU_AFFINITY=0-63:1 numactl --membind=0-3 ./mt-dgemm.aocc 16000







GCC

#Load the foss toolchain
module reset; module load foss/2020a

#Compile:
#  Build for the Rome architecture: -mtune=znver2 -march=znver2
#  Use fast vectorization: -mavx2
#  Use math libraries: -lm
#  Use OpenMP: -fopenmp
#  Other optimizations: -Ofast -ffp-contract=fast -funroll-loops
#  Link with OpenBLAS linear algebra library: -L$OPENBLAS_LIB -lopenblas
#  Macro used by the mt-dgemm program: -D USE_CBLAS
gcc -mtune=znver2 -march=znver2 -mavx2 -lm -fopenmp -Ofast -ffp-contract=fast -funroll-loops -L$OPENBLAS_LIB -lopenblas -D USE_CBLAS -o mt-dgemm.gcc mt-dgemm.c

#Run with 64 OpenMP threads on the cores (0-63) and memory (regions 0-3) associated with socket 1. This keeps Linux from moving the threads away from memory. Using GOMP_CPU_AFFINITY to pin thread 0 to core 0, thread 1 to core 1, etc would be ideal but breaks the threading in OpenBLAS for whatever reason.
OMP_NUM_THREADS=64 numactl -C 0-63 --membind=0-3 ./mt-dgemm.gcc 16000







Intel

Here we use intel 2019 as testing indicates that 2020 is substantially slower.

#Load the intel toolchain
module reset; module load intel/2019b

#Note that the module has set MKL_ENABLE_INSTRUCTIONS=AVX2 and MKL_DEBUG_CPU_TYPE=5
 to ensure that MKL uses the optimal instruction set
env | egrep "MKL_DEBUG_CPU_TYPE|MKL_ENABLE_INSTRUCTIONS"

#Compile:
#  Use fast vectorization: -march=core-avx2
#  Use OpenMP: -qopenmp
#  Other optimizations: -O3 -ffreestanding
#  Link with MKL linear algebra library: -mkl
#  Macro used by the mt-dgemm program: -D USE_MKL=1
icpc -march=core-avx2 -qopenmp -O3 -ffreestanding -mkl -D USE_MKL=1 -o mt-dgemm.intel mt-dgemm.c 

#Run with 64 threads on cores 0-63 (socket 1) using NUMA memory regions 0-3 (socket 1). This keeps Linux from moving the threads away from memory.
MKL_NUM_THREADS=64 GOMP_CPU_AFFINITY=0-63:1 numactl --membind=0-3 ./mt-dgemm.intel 16000







Results

The results show the benefits of AMD’s optimizations and of MKL’s performance over OpenBLAS:

  aocc+blis 2.1:  1658.861832 GF/s
  foss/2020a:     1345.527671 GF/s
  intel/2019b:    1615.846327 GF/s








HPL

HPL [https://www.netlib.org/benchmark/hpl/] is a computing benchmark. Here we use it to demonstrate how to run in the pure MPI (1 process per core) and hybrid MPI+OpenMP (1 process per L3 cache with 4 OpenMP threads working across the cache) models. To load the HPL module, we can do simply

  module reset; module load HPL/2.3-intel-2019b  #intel
  module reset; module load HPL/2.3-foss-2020a   #gcc






MPI Only (1 MPI process/core)

Here we use pure MPI and start one MPI process per core. Jobs in this case should typically be requested with –ntasks-per-node=128 (if you want full node performance).


	Intel, using mpirun. We use an environment variable to make sure that MPI processes are laid out in order and not moved around by the operating system.




  mpirun -genv I_MPI_PIN_PROCESSOR_LIST=0-127 xhpl






	gcc, using mpirun. Here we use OpenMPI’s mapping and binding functionality to assign the processes to consecutive cores.




  mpirun --map-by core --bind-to core -x OMP_NUM_THREADS=1 xhpl






	Intel or gcc, using srun. We use srun’s cpu-bind flag to bind the processes to cores.




  srun --cpu-bind=cores xhpl







Hybrid MPI+OpenMP (1 MPI process/L3 cache)

Here we start one MPI process per L3 cache (every 4 cores). Jobs in this case should typically be requested with –ntasks-per-node=32 –cpus-per-task=4 so that Slurm knows how many processes you need.


	Intel, using mpirun. We use environment variables to tell mpirun to start a process on every fourth core and use 4 OpenMP (MKL) threads per process:




  mpirun -genv I_MPI_PIN_PROCESSOR_LIST="$( seq -s , 0 4 127 )" -genv I_MPI_PIN_DOMAIN=omp -genv OMP_NUM_THREADS=4 -genv OMP_PROC_BIND=TRUE -genv OMP_PLACES=cores xhpl






	gcc, using mpirun. Here we use OpenMPI’s mapping and binding functionality to assign the processes to L3 caches.




  mpirun --map-by ppr:1:L3cache --bind-to l3cache -x OMP_NUM_THREADS=4 xhpl






	Intel or gcc, using Slurm’s srun launcher. We use a cpu mask to tell Slurm which cores each process should have access to. (0xF is hexadecimal for 15, or 1111 in binary, meaning access should be allowed to the first four cores. 0xF0 is 11110000 in binary, meaning access should be allowed to the second set of four cores. The list continues through 11110000…..0000, indicating that the last process should have access to cores 124-127.)




  srun --cpu-bind=mask_cpu=0xF,0xF0,0xF00,0xF000,0xF0000,0xF00000,0xF000000,0xF0000000,0xF00000000,0xF000000000,0xF0000000000,0xF00000000000,0xF000000000000,0xF0000000000000,0xF00000000000000,0xF000000000000000,0xF0000000000000000,0xF00000000000000000,0xF000000000000000000,0xF0000000000000000000,0xF00000000000000000000,0xF000000000000000000000,0xF0000000000000000000000,0xF00000000000000000000000,0xF000000000000000000000000,0xF0000000000000000000000000,0xF00000000000000000000000000,0xF000000000000000000000000000,0xF0000000000000000000000000000,0xF00000000000000000000000000000,0xF000000000000000000000000000000,0xF0000000000000000000000000000000 xhpl







Results

The results show the benefit of the hybrid MPI+OpenMP model and of MKL over OpenBLAS, particularly in the hybrid model.

  intel |     mpi  | mpirun | 2,944 GFlops/s
  intel |     mpi  |   srun | 2,809 GFlops/s
    gcc |     mpi  | mpirun | 2,734 GFlops/s
    gcc |     mpi  |   srun | 2,659 GFlops/s
  intel | mpi+omp  | mpirun | 3,241 GFlops/s
  intel | mpi+omp  |   srun | 3,227 GFlops/s
    gcc | mpi+omp  | mpirun | 2,836 GFlops/s
    gcc | mpi+omp  |   srun | 2,845 GFlops/s











            

          

      

      

    

  

    
      
          
            
  
Infer, GPU Cluster


Overview

Infer came online in January of 2021 and provides 18 nodes, each with an Nvidia T4 GPU. The cluster’s name “Infer” alludes to the AI/ML inference capabilities of the T4 GPUs derived from the “tensor cores” on these devices. We think they will also be a great all-purpose resource for researchers who are making their first forays into GPU-enabled computations of any type.

In the spring of 2021, 40 nodes with two Nvidia P100 GPUs each were migrated from a older ARC system which was being decommissioned.

Technical details are below:



	Vendor

	HPE

	Dell





	Chip

	Intel Xeon Gold 6130 [https://en.wikichip.org/wiki/intel/xeon_gold/6130]

	Intel Xeon E5-2680v4 2.4GHz [https://en.wikichip.org/wiki/intel/xeon_e5/e5-2680_v4]



	Nodes

	18

	40



	Cores/Node

	32

	28



	GPU Model

	Nvidia Tesla T4 [https://www.nvidia.com/en-us/data-center/tesla-t4/]

	Nvidia Tesla P100 [https://www.nvidia.com/en-us/data-center/tesla-p100/]



	GPU/Node

	1

	2



	Memory (GB)/Node

	192

	512



	Total Cores

	576

	1120



	Total Memory (GB)

	3,456

	20,480



	Local Disk

	480GB SSD

	187GB SSD



	Interconnect

	EDR-100 IB

	Ethernet








Login

ARC users can log into Infer at:

infer1.arc.vt.edu



Policies

Limits are set on the scale and quantity of jobs at the user and allocation (Slurm account) levels to help ensure availability of resources to a broad set of researchers and applications:



	

	t4_normal_q

	t4_dev_q

	p100_normal_q

	p100_dev_q





	Node Type

	T4 GPU

	T4 GPU

	P100 GPU

	P100 GPU



	Billing Weight

	0 (no billing)

	0 (no billing)

	0 (no billing)

	0 (no billing)



	Number of Nodes

	16

	2

	-coming soon-

	-coming soon-



	MaxRunningJobs (User)

	10

	2

	

	



	MaxSubmitJobs (User)

	100

	3

	

	



	MaxRunningJobs (Allocation)

	20

	3

	

	



	MaxSubmitJobs (Allocation)

	200

	6

	

	



	MaxNodes (User)

	8

	2

	

	



	MaxNodes (Allocation)

	12

	2

	

	



	MaxCPUs (User)

	256

	64

	

	



	MaxCPUs (Allocation)

	384

	64

	

	



	MaxGPUs (User)

	8

	2

	

	



	MaxGPUs (Allocation)

	12

	2

	

	



	Max Job Duration (hours)

	72

	4

	

	








Modules

Infer’s module structure is similar to that of TinkerCliffs, but  different from previous ARC clusters in that it uses a new application stack/module system based on EasyBuild [https://easybuild.readthedocs.io].  A video tutorial of module usage under this paradigm is provided here [https://video.vt.edu/media/ARCA+Using+modules+to+access+software+packages+%28EasyBuild+version%29/0_nhj2cdjy/176584251]; a longer class on EasyBuild, including how you can use it to build your own modules is here [https://video.vt.edu/media/Using+EasyBuild+to+Access+and+Compile+Scientific+Software/1_jfcy5kc1/176584251].

Key differences between EasyBuild and our legacy paradigm from a user perspective include:


	Hierarchies are replaced by toolchains. Right now, there are four:


	foss (“Free Open Source Software”): gcc compilers, OpenBLAS for linear algebra, OpenMPI for MPI, etc


	fosscuda: foss with CUDA support


	intel: Intel compilers, Intel MKL for linear algebra, Intel MPI


	intelcuda: intel with CUDA support






	Instead of loading modules individually (e.g., module load intel mkl impi), a user can just load the toolchain (e.g., module load fosscuda/2020b).


	Modules load their dependencies, e.g.,




$ module reset; module load GROMACS/2020.4-fosscuda-2020b; module list
Currently Loaded Modules:
  1) shared                       8) GCCcore/10.2.0                15) numactl/2.0.13-GCCcore-10.2.0     22) GDRCopy/2.1-GCCcore-10.2.0-CUDA-11.1.1  29) FFTW/3.3.8-gompic-2020b
  2) gcc/9.2.0                    9) zlib/1.2.11-GCCcore-10.2.0    16) XZ/5.2.5-GCCcore-10.2.0           23) UCX/1.9.0-GCCcore-10.2.0-CUDA-11.1.1    30) ScaLAPACK/2.1.0-gompic-2020b
  3) slurm/slurm/19.05.5         10) binutils/2.35-GCCcore-10.2.0  17) libxml2/2.9.10-GCCcore-10.2.0     24) libfabric/1.11.0-GCCcore-10.2.0         31) fosscuda/2020b
  4) apps                        11) GCC/10.2.0                    18) libpciaccess/0.16-GCCcore-10.2.0  25) PMIx/3.1.5-GCCcore-10.2.0               32) GROMACS/2020.4-fosscuda-2020b
  5) site/infer/easybuild/setup  12) CUDAcore/11.1.1               19) hwloc/2.2.0-GCCcore-10.2.0        26) OpenMPI/4.0.5-gcccuda-2020b
  6) useful_scripts              13) CUDA/11.1.1-GCC-10.2.0        20) libevent/2.1.12-GCCcore-10.2.0    27) OpenBLAS/0.3.12-GCC-10.2.0
  7) DefaultModules              14) gcccuda/2020b                 21) Check/0.15.2-GCCcore-10.2.0       28) gompic/2020b






	All modules are visible with module avail. So in many cases it is probably better to search with module spider rather than printing the whole list.


	Some key system software, like the Slurm scheduler, are included in default modules. This means that module purge can break important functionality. Use module reset instead.


	Lower-level software is included in the module structure (see, e.g., binutils in the GROMACS example above), which should mean less risk of conflicts in adding new versions later.


	Environment variables (e.g., $SOFTWARE_LIB) available in our previous module system may not be provided. Instead, EasyBuild typically provides $EBROOTSOFTWARE to point to the software installation location. So for example, to link to NetCDF libraries, one might use -L$EBROOTCUDA/lib64 instead of the previous -L$CUDA_LIB.








            

          

      

      

    

  

    
      
          
            
  
Cascades, CPU/GPU Cluster


Overview

Cascades is a 236-node system capable of tackling the full spectrum of computational workloads, from problems requiring hundreds of compute cores to data-intensive problems requiring large amount of memory and storage resources. Cascade contains four compute engines designed for distinct workloads.


	General - Distributed, scalable workloads. With Intel’s Broadwell processors, 2 16-core processors and 128 GB of memory on each node, this 190-node compute engine is suitable for traditional HPC jobs and large codes using MPI.


	Very Large Memory - Graph analytics and very large datasets. With 3TB (3072 gigabytes) of memory, four 18-core processors and 6 1.8TB direct attached SAS hard drives, 400 GB SAS SSD drive, and one 2 TB NVMe PCIe flash card , each of these two servers will enable analysis of large highly-connected datasets, in-memory database applications, and speedier solution of other large problems.


	K80 GPU - Data visualization and code acceleration. There are four nodes in this compute engine which have - two Nvidia K80 (Kepler) GPUs, 512 GB of memory, and one 2 TB NVMe PCIe flash card.


	V100 GPU - Extremely fast execution of GPU-enabled codes. There are 40 nodes in this engine, although one of these nodes is reserved for system maintenance. Each node is equipped with two Intel Skylake Xeon Gold 3 Ghz CPU’s, amounting to 24 cores on each node. There is 384 GB of memory, and two NVIDIA V100 (Volta) GPU’s. Each of these GPU’s is capable of more than 7.8 TeraFLOPS of double precision performance.






Technical Specifications



	COMPUTE ENGINE

	#

	HOSTS

	CPU

	CORES

	MEMORY

	LOCAL STORAGE

	OTHER FEATURES





	General

	190

	ca007-ca196

	2 x E5-2683v4 2.1GHz (Broadwell)

	32

	128 GB, 2400 MHz

	1.8TB 10K RPM SAS200 GB SSD

	



	Very Large Memory

	2

	ca001-ca002

	4 x E7-8867v4 2.4 GHz (Broadwell)

	72

	3 TB, 2400 MHz

	3.6 TB (2 x 1.8 TB) 10K RPM SAS (RAID 0)6-400 GB SSD (RAID 1) 2 TB NVMe PCIe

	



	K80 GPU

	4

	ca003-ca006

	2 x E5-2683v4 2.1GHz (Broadwell)

	32

	512GB, 2400MHz

	3.6 TB (2 x 1.8 TB) 10K RPM SAS (RAID 0)2-400 GB SSD (RAID 1) 2 TB NVMe PCIe

	2-NVIDIA K80 GPU



	V100 GPU

	40

	ca197-ca236

	2 x Intel Xeon Gold 6136 3.0GHz (Skylake)

	24

	384GB, 2666MHz

	2-400 GB SSD (RAID 1)

	2-NVIDIA V100 GPU






Notes:


	K80 GPU Notes: There are 4 CUDA Devices. Although the K80s are a single physical device in 1 PCIe slot, there are 2 separate GPU chips inside. They will be shown as 4 separate devices to CUDA code. nvidia-smi will show this.


	All nodes have locally mounted SAS and SSDs. /scratch-local (and $TMPDIR) point to the SAS drive and /scratch-ssd points to the SSD on each node. On large memory and GPU nodes, which have multiple of each drive, the storage across the SSDs are combined in /scratch-ssd (RAID 0) and the SAS drives are mirrored (RAID 1) for redundancy.




Network:


	100 Gbps Infiniband interconnect provides low latency communication between compute nodes for MPI traffic.


	10 Gbps Ethernet interconnect provides high speed connectivity and access to storage.






Policies

Cascades is governed by an allocation manager, meaning that in order to run most jobs, you must be an authorized user of an allocation that has been submitted and approved. For more on allocations, click here. The Cascades partitions (queues) are:


	normal_q for production (research) runs.


	largemem_q for production (research) runs on the large memory nodes.


	dev_q for short testing, debugging, and interactive sessions. dev_q provides slightly elevated job priority to facilitate code development and job testing prior to production runs.


	k80_q for runs that require access to K80 GPU nodes


	v100_normal_q for production (research) runs with the V100 nodes


	v100_dev_q short testing, debugging, and interactive sessions with the V100 nodes




The Cascades partition (queue) settings are:



	PARTITION

	NORMAL_Q

	LARGEMEM_Q

	DEV_Q

	K80_Q

	V100_NORMAL

	V100_DEV





	Access to

	ca007-ca196

	ca001-ca002

	ca007-ca196

	ca003-ca006

	ca197-ca236

	ca197-ca236



	Max Jobs

	24 per user, 48 per allocation

	1 per user

	1 per user

	4 per user, 6 per allocation

	8 per user, 12 per allocation

	1 per user



	Max Nodes

	32 per user, 48 per allocation

	1 per user

	32 per user, 48 per allocation

	4 per user

	12 per user, 24 per allocation

	12 per user, 24 per allocation



	Max Cores

	1,024 per user, 1,536 per allocation

	72 per user

	1,024 per user, 1536 per allocation

	128 per user

	288 per user, 576 per allocation

	336 per user



	Max Memory (calculated, not enforced)

	4 TB per user, 6 TB per allocation

	3 TB per user

	4 TB per user, 6 TB per allocation

	2 TB per user

	4 TB per user, 6 TB per allocation

	1 TB per user



	Max Walltime

	144 hr

	144 hr

	2 hr

	144 hr

	144 hr

	2 hr



	Max Core-Hours

	73,728 per user

	10,368 per user

	256 per user

	9,216 per user

	20,736 per user

	168 per user






Notes:


	Shared node access: more than one job can run on a node


	The micro-architecture on the V100 nodes is newer than (and distinct from) the Broadwell nodes. For best performance and compatibility, programs that are to run on V100 nodes should be compiled on a V100 node. Note that the login nodes are Broadwell nodes, so compilation on a V100 node should be done as part of the batch job, or during an interactive job on a V100 node (see below).






Access

Cascades can be accessed via one of the two login nodes:


	cascades1.arc.vt.edu


	cascades2.arc.vt.edu




Users may also use Open OnDemand to access the cluster.



Job Submission

Access to all compute nodes is controlled via the Slurm resource manager; see the Slurm documentation for additional usage information. Example resource requests on Cascades include:

#Request exclusive access to all resources on 2 nodes 
#SBATCH --nodes=2 
#SBATCH --exclusive

#Request 4 cores (on any number of nodes)
#SBATCH --ntasks=4

#Request 2 nodes with 12 tasks running on each
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=12

#Request 12 tasks with 20GB memory per core
#SBATCH --ntasks=12 
#SBATCH --mem-per-cpu=20G

#Request one NVIDIA V100 GPU and 100GB memory
#SBATCH --nodes=1 #(implies --ntasks=1 unless otherwise specified)
#SBATCH --partition=v100_normal_q
#SBATCH --gres=gpu:1
#SBATCH --mem=100G









            

          

      

      

    

  

    
      
          
            
  
DragonsTooth, High-Throughput Computing


Overview

DragonsTooth is a 48-node system designed to support general batch HPC jobs. The table below lists the technical details of each DragonsTooth node. Nodes are connected to each other and to storage via 10 gigabit ethernet (10GbE), a communication channel with high bandwidth but higher latency than InfiniBand (IB). As a result, DragonsTooth is better suited to jobs that require less internode communication and/or less I/O intearction with non-local storage than NewRiver, which has similar nodes but a low-latency IB interconnect. To allow I/O-intensive jobs, DragonsTooth nodes are each outfitted with nearly 2 TB of solid state local disk. DragonsTooth was released to the Virginia Tech research community in August 2016. In November of 2018, DragonsTooth was reprovisioned with Slurm as its scheduler as a replacement for Moab/Torque.



Technical Specifications



	Component

	Specification





	CPU

	2 x Intel Xeon E5-2680v3 (Haswell) 2.5 GHz 12-core



	Memory

	256 GB 2133 MHz DDR4



	Local Storage

	4 x 480 GB SSD Drives



	Theoretical Peak (DP)

	806 GFlops/s








Policies

Note: DragonsTooth is governed by an allocation manager, meaning that in order to run most jobs on it, you must be an authorized user of an allocation that has been submitted and approved. For more on allocations, click here.

As described above, communications between nodes and between a node and storage will have higher latency on DragonsTooth than on other ARC clusters. For this reason the queue structure is designed to allow more jobs and longer-running jobs than on other ARC clusters. DragonsTooth has two partitions (queues):


	normal_q for production (research) runs.


	dev_q for short testing, debugging, and interactive sessions. dev_q provides slightly elevated job priority to facilitate code development and job testing prior to production runs.




The settings for the partitions are:



	Partition

	normal_q

	dev_q





	Access to

	dt003-dt048

	dt003-dt048



	Max Jobs

	288 per user 432 per allocation

	1 per user



	Max Nodes

	12 per user 18 per allocation

	12 per user



	Max Core-Hours*

	34,560 per user 51,840 per allocation

	96 per user



	Max Walltime

	30 days

	2 hr






Other notes:


	Shared node access: more than one job can run on a node.




*A user cannot, at any one time, have more than this many core-hours allocated across all of their running jobs. So you can run long jobs or large/many jobs, but not both. For illustration, the following table describes how many nodes a user can allocate for a given amount of time:



	Walltime

	Max Nodes (per user)

	Max Nodes (per allocation)





	72 hr (3 days)

	12

	18



	144 hr (6 days)

	10

	15



	360 hr (15 days)

	4

	6



	720 hr (30 days)

	2

	3








Access

DragonsTooth can be accessed via one of the two login nodes:


	dragonstooth1.arc.vt.edu


	dragonstooth2.arc.vt.edu




Users may also use Open OnDemand to access the cluster.



Job Submission

Access to all compute nodes is controlled via the Slurm resource manager; see the Slurm documentation for additional usage information. Example resource requests on Cascades include:

#Request exclusive access to all resources on 2 nodes 
#SBATCH --nodes=2 
#SBATCH --exclusive

#Request 4 cores (on any number of nodes)
#SBATCH --ntasks=4

#Request 2 nodes with 12 tasks running on each
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=12

#Request 12 tasks with 20GB memory per core
#SBATCH --ntasks=12 
#SBATCH --mem-per-cpu=20G









            

          

      

      

    

  

    
      
          
            
  
Huckleberry


Warning

Huckleberry is scheduled to be retired in Spring 2022. Please consider one of our other GPU resources for deep learning applications.




Overview

Huckleberry is a high performance computing system targeted at deep learning applications. Huckleberry consists of two login nodes and Fourteen IBM Minksy S822LC compute nodes. Each of the compute nodes is equipped with:


	Two IBM Power8 CPU (3.26 GHz) with 256 GB of memory


	Four NVIDIA P100 GPU with 16 GB of memory each


	NVLink interfaces connecting CPU and GPU memory spaces


	Mellanox EDR Infiniband (100 GB/s) interconnect


	CentOS 7 OS






Login

To access Huckleberry, users should login to: ssh huckleberry1.arc.vt.edu



Basic Job Submission and Monitoring

The huckleberry normal_q imposes the following limits


	maximum walltime of 3 days


	maximum of three nodes per user
The huckleberry large_q imposes the following limits


	maximum walltime of 1 day


	maximum of four nodes per user
The current configuration allows users to run jobs either through the batch scheduler or interactively. The following is a basic hello world job submission script requesting 500 GB memory and all four Pascal P100 GPU on a compute node:




#!/bin/bash

#SBATCH -J hello-world
#SBATCH -p normal_q
#SBATCH -p normal_q
#SBATCH -N 1  # this will not assign the node exclusively. See the note above for details
#SBATCH -t 10:00
#SBATCH --mem=500G
#SBATCH --gres=gpu:4
#SBATCH --account=(YOUR ALLOCATION ID)
echo hello world





NOTE: asking for -N 1 without specifying how many cores per node will default to only 1 core (equivalent to -n 1). If you would like to get the full node exclusively, you should ask for all the cores on the node using the flag -n, or, you could use the --exclusive flag.

To learn how to submit or monitor your jobs, please see the Slurm documentation.

In many cases jobs will require fewer than the four GPU available on each huckleberry compute node. GPU can be requested as a generic resource (GRES) through Slurm by requesting a specific number of processor cores and GPU. To request one processor core and one GPU in an interactive session with 8 GB of memory per processor core,

interact --nodes=1 --ntasks-per-node=8  -l walltime=0:10:00 --mem-per-cpu=8G --gres=gpu:1 -A yourallocation





Slurm will set the $CUDA_VISIBLE_DEVICES environment variable automatically based on your request. Multiple processor cores and/or GPU can be requested in the same manner. For example, to request two GPU and 10 CPU cores, one might run

interact -n10 -t 10:00 --mem-per-cpu=4G --gres=gpu:2





The Power8 CPU are viewed by Slurm as 20 processor cores.



Software

Software modules are available on huckleberry and function in the same manner as other ARC systems, e.g. the following syntax will load the module for cuda module load cuda. Additionally, IBM’s PowerAI deep learning software are installed under within the Anaconda3 module. A few brief tutorials are provided below.


Python

For users that would like to customize their Python environment, we provide online documentation for best practices to manage Python on ARC systems. For more detailed usages, please refer to part below.



Jupyter Notebooks

Jupyter notebooks are included in the anaconda python distribution installed on huckleberry. An example script to launch a job on a compute node is here:

#!/bin/bash

#SBATCH -J start-jupyter
#SBATCH -n 4
##SBATCH --exclusive
#SBATCH --gres=gpu:pascal:1
#SBATCH --mem=120G
#SBATCH -t 24:00:00
#SBATCH -p normal_q

echo "starting jupyter notebook"

#PATH=/home/mcclurej/anaconda2/bin:$PATH
export PATH=/opt/apps/anaconda2/4.4.0.1/bin:$PATH

module load cuda
source /opt/DL/caffe-ibm/bin/caffe-activate
source /opt/DL/openblas/bin/openblas-activate
source /opt/DL/tensorflow/bin/tensorflow-activate
source /opt/DL/theano/bin/theano-activate
source /opt/DL/torch/bin/torch-activate
source /opt/DL/digits/bin/digits-activate

#let ipnport=($UID-6025)%65274
#echo $ipnport >> ipnport.txt

#jupyter notebook --ip=$HOSTNAME --port=5034 --no-browser > jupyter.server
unset XDG_RUNTIME_DIR

GPUID=$(echo $CUDA_VISIBLE_DEVICES | cut -c1)
port=`expr 5030 + $GPUID`

jupyter notebook --ip=$HOSTNAME --port=$port --no-browser &>  jupyter.hostname

exit





This will start a jupyter notebook with an appropriate hostname and port so that the session can be opened in a browser on the login node. When using firefox, it is recommended to use X-forwarding and compression when connecting to huckleberry as follows

ssh -X -C huckleberry1.arc.vt.edu





Download the juypter-server script to your home directory with
Then if the script above is in the file jupyter-server.sh, you can start the notebook by submitting a batch job with

sbatch jupyter-server.sh &





The script will populate the file jupyter.hostname with the appropriate URL to interact with the remote session. This URL can be extracted from the file as follows

URL=$(grep -A2 URL jupyter.hostname | tail -1)





Then open a firefox window from the login node

firefox --no-remote -url $URL &





The jupyter notebook should open in the firefox browser, running on the compute node assigned to you job.



PowerAI

Many of the PowerAI tools depend on cuda, and your $PATH and $LD_LIBRARY_PATH variables should be set accordingly:

export PATH=/usr/local/cuda-8.0/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:$LD_LIBRARY_PATH





Theano depends on pycuda, which is not included in the centrally-provided python. It can be installed locally as follows (see our python user guide for additional details):

pip install --user pycuda





DIGITS wraps several of the popular deep learning tools into an easy-to-use web interface. To open the DIGITS interface, first establish an instance of the DIGITS server by submitting a batch job that launches digits-devserver on one of the compute nodes. The following script will start the digits server on a compute node with 2 hours of walltime:

#!/bin/bash

#SBATCH -J digits-devserver
#SBATCH -N 1
#SBATCH -t 24:00:00

echo "starting digits server"

module load cuda
source /opt/DL/caffe-ibm/bin/caffe-activate
source /opt/DL/openblas/bin/openblas-activate
source /opt/DL/tensorflow/bin/tensorflow-activate
source /opt/DL/theano/bin/theano-activate
source /opt/DL/torch/bin/torch-activate
source /opt/DL/digits/bin/digits-activate

digits-devserver

exit





The job should be launched by typing

sbatch digits-devserver.sh





Type squeue to identify which compute node the job is running on. Once the server is running on the compute node, you will be able to load DIGITS from a browser that runs on the login node. To start firefox from the login node, type

firefox --no-remote &





If your job is running on compute node hu001, you should point your browser at http://hu001:5000 to open the digits interface (if your job is running on another compute node, you should enter it instead of hu001). DIGITS essentially provides a portal to control the jobs that run on the compute node. To train a basic model, a good starting point are the basic examples included in DIGITS. Input data has already been downloaded to the ARC filesystem. A local copy can be obtained by running

tar xvzf /home/TRAINING/mnist.tar.gz





Once the data has been downloaded, you can train a model by following the steps described at https://github.com/NVIDIA/DIGITS/blob/master/docs/GettingStarted.md.




NUMA

Understanding non-uniform memory access (NUMA) patterns important to get the full benefit of the S822LC compute nodes on huckleberry. The memory bandwidth associated with data movement within each compute node is summarized in the diagram below. Note that each Power8 CPU is coupled to two P100 GPU through NVLink, which supports bi-directional data transfer rates of 80 GB/s. The theoretical maximum memory bandwidth for each Power8 CPU is 115 GB/s. The theoretical maximum memory bandwidth for each NVIDIA P100 GPU is 720 GB/s.

[image: ]



PowerAI Installation & Usage (Updated in April 2019)

All testing(on TF, Pytorch, Keras(TF backend), Caffe) has been performed with python/3.6 on Huckleberry GPU nodes, you could see testing demonstrations and example python scripts from this shared Google Drive Folder  [https://drive.google.com/open?id=1n3aEGnQdM3NU6XUyDHEAd5HQM0v5tfvl]


Part 1. PowerAI Library Usage (PREFERRED)

# step 1: request for GPU nodes
# salloc --partition=normal_q --nodes=1 --tasks-per-node=10 --gres=gpu:1 bash
# step 2: load all necessary modules
module load gcc cuda Anaconda3 jdk
# step 3: activate the virtual environment
source activate powerai16_ibm
# step 4: test with simple code examples, Google drive above
python test_pytorch.py
python test_TF_multiGPUs.py
python test_keras.py
# step 5: for new packages(take beautifulsoup4 for example)
pip install --user beautifulsoup4 # on hulogin1/hulogin2
# or pip install --user --no-deps keras







Part 2. Installation

First make sure you are in hulogin1/hulogin2

module load gcc cuda Anaconda3 jdk
java -version
conda create -n powerai36 python==3.6 # create a virtual environment
source activate powerai36 # activate virtual environment
conda config --prepend channels https://public.dhe.ibm.com/ibmdl/export/pub/software/server/ibm-ai/conda/
# if things don't work, add two channels and run commands showing below
conda config --add default_channels https://repo.anaconda.com/pkgs/main
conda config --add default_channels https://repo.anaconda.com/pkgs/r
# install ibm powerai meta-package via conda
conda install powerai
# keep type 'enter' and then enter 1 for license acceptance
export IBM_POWERAI_LICENSE_ACCEPT=yes
# you will need to update the jupyter package 
conda install jupyter notebook





Please feel free to contact us if you have seen issues or have special requirements over using ML/DL/Simu/Vis packages on Huckleberry.






            

          

      

      

    

  

    
      
          
            
  
List of GPUs on ARC Resources

Need a GPU? Here is a list of where you can find them on ARC’s clusters:



	Architecture

	Cluster

	Partition

	Number





	NVIDIA A100-80G [https://www.nvidia.com/en-us/data-center/a100/]

	TinkerCliffs

	a100_normal_q, a100_dev_q

	32 (4 nodes, 8 GPU/node)



	NVIDIA Volta V100 [https://www.nvidia.com/en-us/data-center/v100/]

	Infer

	v100_normal_q, v100_dev_q

	4 (2 nodes, 2 GPU/node)



	NVIDIA Volta V100 [https://www.nvidia.com/en-us/data-center/v100/]

	Cascades*

	v100_normal_q, v100_dev_q

	76 (38 nodes, 2 GPU/node)



	NVIDIA Tesla T4 [https://www.nvidia.com/en-us/data-center/tesla-t4/]

	Infer

	t4_normal_q, t4_dev_q

	18 (18 nodes, 1 GPU/node)



	NVIDIA Tesla P100 [https://www.nvidia.com/en-us/data-center/tesla-p100/]

	Infer

	p100_normal_q, p100_dev_q

	80 (40 nodes, 2 GPU/node)



	NVIDIA Tesla P100 [https://www.nvidia.com/en-us/data-center/tesla-p100/]

	Huckleberry

	normal_q

	56 (14 nodes, 4 GPU/node)



	NVIDIA Tesla K80 [https://www.nvidia.com/en-gb/data-center/tesla-k80/]

	Cascades*

	k80_q

	16 (4 nodes, 4 GPU/node)






* ARC is preparing to move these nodes to Infer.




            

          

      

      

    

  

    
      
          
            
  
Open OnDemand

Open OnDemand is a web portal that provides access to ARC HPC clusters. It facilitates clusters’ access and job management without the need for Linux experience or any installations on the client-side. The only requirement is an up-to-date web browser. Firefox or Chrome are preferred.


Features

OnDemand provides the following features


	File Management and Transfer


	Job Management


	Shell Access


	Interactive Apps






Usage instructions


	In order to use OnDemand, you will need to be using the university network or on VPN (VT Traffic over SSL VPN)


	Once connected, go to either:


	https://ondemand.arc.vt.edu (Legacy site: Older version)


	https://ood.arc.vt.edu (New site: Newer version and features, but still under development in places)






	Then, you can log in using your VT credentials (PID and password). If already logged into another VT site, you may not need to enter any credentials at all.






Examples

OnDemand provides interactive apps on each of the clusters, as shown in the image below.

[image: ]

See also our video tutorial [https://video.vt.edu/media/ARCA+Open+OnDemand+for+Browser-based+Cluster+Access/1_nkp1ebuu/176584251].

For complete documentation, please visit Ohio Supercomputer Center, which develops Open OnDemand detailed documentation pages [https://www.osc.edu/resources/online_portals/ondemand].





            

          

      

      

    

  

    
      
          
            
  
Storage Resources


Overview

ARC offers several different storage options for users’ data:



	Name

	Intent

	File System

	Environment Variable

	Per User Maximum

	Data Lifespan

	Available On





	Home

	Long-term storage of files

	Qumulo

	$HOME

	640 GB 1 million files

	Unlimited

	Login and Compute Nodes



	Group (Cascades, DragonsTooth, Huckleberry)

	Long-term storage of shared, group files

	GPFS

	- n/a -

	10 TB, 5 million files per faculty researcher (Expandable via investment)

	Unlimited

	Login and Compute Nodes



	Project (TinkerCliffs, Infer)

	Long-term storage of shared, group files

	BeeGFS

	- n/a -

	25 TB, 5 million files per faculty researcher (Expandable via investment)

	Unlimited

	Login and Compute Nodes



	Work (Cascades, DragonsTooth, Huckleberry)

	Fast I/O, Temporary storage

	GPFS

	$WORK

	14 TB, 3 million files

	120 days

	Login and Compute Nodes



	Work (TinkerCliffs, Infer)

	Fast I/O, Temporary storage

	BeeGFS

	$WORK

	1 TB, 1 million files

	Unlimited

	Login and Compute Nodes



	Archive

	Long-term storage for infrequently-accessed files

	GPFS

	$ARCHIVE

	-

	Unlimited

	Login Nodes



	Local Scratch

	Local disk (hard drives)

	

	$TMPDIR

	Size of node hard drive

	Length of Job

	Compute Nodes



	Memory (tmpfs)

	Very fast I/O

	Memory (RAM)

	$TMPFS

	Size of node memory allocated to job

	Length of Job

	Compute Nodes






Each is described in the sections that follow.



Home

Home provides long-term storage for system-specific data or files, such as installed programs or compiled executables. Home can be reached the variable $HOME, so if a user wishes to navigate to their Home directory, they can simply type cd $HOME. Each user is provided a maximum of 640 GB in their Home directories (across all systems). When a user exceeds the soft limit, they are given a grace period after which they can no longer add any files to their Home directory until they are below the soft limit. Home directories are also subject to a 690 GB hard limit; users Home directories are not allowed to exceed this limit. Note that running jobs fail if they try to write to a Home directory after the soft limit grace period is expired or when the hard limit is reached.



Group and Project

Project (on TinkerCliffs and Infer) and Group (on Cascades, DragonsTooth, and Huckleberry) provide long-term storage for files shared among a research project or group, facilitating collaboration and data exchange within the group. Each Virginia Tech faculty member can request group storage up to the prescribed limit at no cost by requesting a storage allocation via ColdFront [https://coldfront.arc.vt.edu]. Additional storage may be purchased through the investment computing or cost center programs.


Quotas on Project

The file system that provides Project and Work directories on TinkerCliffs and Infer does quotas based on the group ID (GID) associated with files. This means that:


	Files in your Work directory can count against your Project quota if they have that project’s GID


	Files in your Project directory can count against your Work quota if they have your personal GID




You can check your Project and Work quotas with the quota command. You can check the GID associated with your files with ll (the same as ls -l) and can change the group with chgrp (chgrp -R for recursive on a directory). You can find files in a more automated fashion with find – see the example below. As an example, here we find some files in /projects/myproject that are owned by mypid:

[mypid@tinkercliffs2 ~]$ find /projects/myproject/test -group mypid
/projects/myproject/test
/projects/myproject/test/datafile
/projects/myproject/test/test.txt
[mypid@tinkercliffs2 ~]$ ls -ld /projects/myproject/test/
drwxrwxr-x 2 mypid mypid 2 Oct  4 08:43 /projects/myproject/test/
[mypid@tinkercliffs2 ~]$ ls -lh /projects/myproject/test/
total 1.1G
-rw-rw-r-- 1 mypid mypid 1.0G Oct  4 08:43 datafile
-rw-rw-r-- 1 mypid mypid    5 Jun  8 10:51 test.txt





These files will count against mypid’s Work quota. We change their ownership to the associated group with chgrp -R:

[mypid@tinkercliffs2 ~]$ chgrp -R arc.myproject /projects/myproject/test
[mypid@tinkercliffs2 ~]$ ls -ld /projects/myproject/test/
drwxrwxr-x 2 mypid arc.myproject 2 Oct  4 08:43 /projects/myproject/test/
[mypid@tinkercliffs2 ~]$ ls -lh /projects/myproject/test/
total 1.1G
-rw-rw-r-- 1 mypid arc.myproject 1.0G Oct  4 08:43 datafile
-rw-rw-r-- 1 mypid arc.myproject    5 Jun  8 10:51 test.txt





The files will now count against the Project quota.

A more automated example would be to have find both locate and change ownership of the files:

[mypid@tinkercliffs2 ~]$ ls -lh /projects/myproject/test/
total 1.1G
-rw-rw-r-- 1 mypid mypid 1.0G Oct  4 08:43 datafile
-rw-rw-r-- 1 mypid mypid    5 Jun  8 10:51 test.txt
[mypid@tinkercliffs2 ~]$ find /projects/myproject/test -group mypid -exec chgrp arc.myproject {} +
[mypid@tinkercliffs2 ~]$ ls -lh /projects/myproject/test/
total 1.1G
-rw-rw-r-- 1 mypid arc.myproject 1.0G Oct  4 08:43 datafile
-rw-rw-r-- 1 mypid arc.myproject    5 Jun  8 10:51 test.txt








Work

Work provides users with fast, user-focused storage for use during simulations or other research computing applications. However, it encompasses two paradigms depending on the cluster where it is being used:


	On TinkerCliffs and Infer, it provides 1 TB of user-focused storage that is not subject to a time limit. Note that this quota is enforced by the GID associated with files and not by directory, so files in Project storage can wind up being counted against your Work quota; see here for details and fixes.


	On Cascades, DragonsTooth, and Huckleberry, it provides up to 14 TB of space. However, ARC reserves the right to purge files older than 120 days from this file system. It is therefore aimed at temporary files, checkpoint files, and other scratch files that might be created during a run but are not needed long-term. Work for a given system can be reached via the variable $WORK. So if a user wishes to navigate to Work directory, they can simply type cd $WORK.






Archive

Archive provides users with long-term storage for data that does not need to be frequently accessed i.e. storing important/historical results. Archive is accessible from all ARC’s systems.  Archive is not mounted on compute nodes, so running jobs cannot access files on it. Archive can be reached the variable $ARCHIVE, so if a user wishes to navigate to their Archive directory, they can simply type cd $ARCHIVE.


Best Practices for archival storage

Because the ARCHIVE filesystem is backed by tape (a high capacity but very high latency medium), it is very inefficient and disruptive to do file operations (especially on lots of small files) on the archive filesystem itself. Archival systems are designed to move and replicate very large files; ideally users will tar all related files into singular, large files. Procedures are below:

To place data in $ARCHIVE:


	create a tarball containing the files in your $HOME (or $WORK) directory


	copy the tarball to the $ARCHIVE filesystem (use rsync in case the transfer were to fail)




To retrieve data from $ARCHIVE:


	copy the tarball back to your $HOME (or $WORK) directory (use rsync in case the transfer were to fail).


	untar the file on the login node in your $HOME (or $WORK) directory. Directories can be tarred up in parallel with, for example, gnu parallel [https://www.gnu.org/software/parallel/] (available via the parallel module). This line will create a tarball for each directory more than 180 days old:




find . -maxdepth 1 -type d -mtime +180 | parallel [[ -e {}.tar.gz ]] || tar -czf {}.tar.gz {}





The resulting tarballs can then be moved to Archive and directories can then be removed. (Directories can also be removed automatically by providing the --remove-files flag to tar, but this flag should of course be used with caution.)




Local Scratch

Running jobs are given a workspace on the local hard drive on each compute node. The path to this space is specified in the $TMPDIR environment variable. This provides another option for users who would prefer to do I/O to local disk (such as for some kinds of big data tasks). Please note that any files in local scratch are removed at the end of a job, so any results or files to be kept after the job ends must be copied to Work or Home.



Memory

Running jobs have access to an in-memory mount on compute nodes via the $TMPFS environment variable. This should provide very fast read/write speeds for jobs doing I/O to files that fit in memory (see the system documentation for the amount of memory per node on each system). Please note that these files are removed at the end of a job, so any results or files to be kept after the job ends must be copied to Work or Home.



Checking Usage

You can ch